

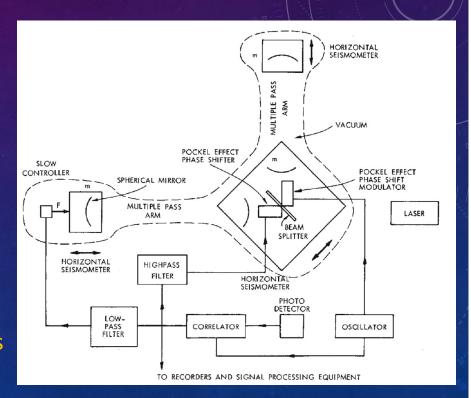
RAI WEISS

SEPTEMBER 29, 1932, BERLIN, GERMANY AUGUST 25, 2025, CAMBRIDGE, MASSACHUSETTS, U.S.

- 1972 Internal Report roadmap for making instruments that work
- 1975 discussion with Kip triggering the activity at Caltech leading to LIGO
- 1983 Blue book with MIT-Caltech authors put LIGO on a firm quantified basis
- 1986 NSF Blue Ribbon Panel Convinced Garwin
- 1990 10,001 analyses to manage Drever's imagination
- 1994 Designing and watching over the beam tube realization
- 1997 Launching the LSC; current Analysis domains
- 2000 Constant presence at the LIGO Sites, LIGO BT leaks
- Mentoring many of the leaders of the field

OBJECTIVES

- Give a reminder of the growth of the observational field
 - Limited to terrestrial interferometric detectors
- Tease out some differences and repercussions; a personal view
- Organized around Epochs:
 - Prototypes on a range of scales
 - Coalescence of Experimental groups
 - Observatory proposals
 - Observatory design and construction
 - Start of the Collaboration Epoch
 - Observatory Operations and Upgrades
 - Next-generation Observatories


TRAJECTORY

- 1975-83 MIT Weiss group; COBE, GW
- 1983-86 Garching Max Planck group
- 1986-89 Orsay Brillet group
- 1989- MIT LIGO, LISA, CE

RAI WEISS

https://link.springer.com/article/10.1007/s10714-022-03021-3 https://link.springer.com/article/10.1007/s10714-022-03022-2

- Electromagnetically coupled broadband gravitational antenna
- 1972 Internal Report roadmap for making instruments that work
- Both analysis and instrument concept show Dicke's influence
- Basic concept sketched
- 'Basis Set' of stochastic forces and optical sensing limitations, with conceptual designs and derivation of requirements

1970-80 R&D

- Glasgow/Caltech
 - Developing ideas for interferometry; Fabry-Perot cavities, power and signal recycling (Drever, Hough, Strain, Meers...)
- Orsay
 - Bringing forward interferometry topologies, frequency stabilization, and Nd:YAG lasers (Brillet)
- Pisa
 - Trying first active isolation controls, then multiple 6 degree-of-freedom pendulums (Giazotto)
- Early MIT experimental effort started from the 1972 report
 - 1.2m Michelson interferometer using Delay Lines in the arms, data acquisition and instrument monitoring, a search for signals – a complete system, of marginal sensitivity (Weiss, Dewey, Livas, Shoemaker...)

1970-80 R&D: GARCHING GROUP

- (Schilling, Rüdiger, Maischberger, Winkler, Schnupp)
- Seasoned instrument builders, in MPI Astrophysics
- Backed up by electronics and mechanics specialists and shops
- Built the best room-temperature Weber bars, saw nothing
- Received Weiss' proposal to NSF by back door; adopted interferometry
- Built several prototypes, final one of 30m armlength
- Perfectly suited to work through Weiss' 1972 paper, providing experimental basis to complement Weiss' 'theory' paper
- Gave LIGO credibility,
 and a model for how to do lab work
- As for NR, the Max Planck approach key

PARTICLES AND FIELDS

HIRD SERIES, VOLUME 38, NUMBER 2

15 JULY 1988

Noise behavior of the Garching 30-meter prototype gravitational-wave detector

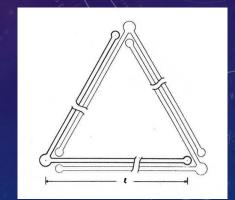
BY THE MID-1980S...

- Viable notions of the instrumentation for full-scale detectors
- Independent studies of full-scale detectors from US, France/Italy, Germany, UK
- Initial efforts at analyzing data
- Initial concepts for managing quantum noise
- Growing interest by funding agencies of this new field
- Most work was undertaken in isolated groups, in 'friendly competition'

EXPERIMENTAL GROUP COALESCENCE

- Driven by Weiss and the NSF, Caltech and MIT joined forces
 - After some early efforts, Robbie Vogt named director, at Caltech (1987)
 - Brought authority, project experience, and engineering resources
 - Dictated changes in MIT and Caltech experimental groups, instilled 'Project' mentality, and led to some loss of staff
- Orsay and Pisa joined forces
 - Real complementarity in instrument skills (lasers, seismic isolation)
 - Brillet had optics and interferometry experience; was a leader in laser stabilization
 - Giazotto had project experience from HEP (and good connections)
- Garching→Hannover (Danzmann) and Glasgow joined forces
 - Similar working vision, similar interests

EUROPEAN GROUP BIFURCATION

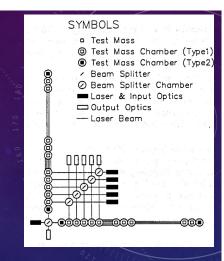

- Glasgow/Hannover and Pisa/Orsay shifted from Pan-European work to really independent effort
- What caused this split?
- Giazotto took advantage of an opening to get funding for Virgo (1992/3)
 - In some measure a violation of agreements for pan-European planning
- Germany and Glasgow believed firmly in the need for prototypes
 - Not Pisa and Orsay Desire not to incur the delay of realizing prototypes
 - This may have had long-term effects in depriving Virgo of new generations of commissioners
 - With hindsight, some Virgo design decisions might have been avoided
 - Glasgow/Garching may have believed that Orsay/Pisa lacked necessary experience/judgement

KEY LIGO PROTOTYPE DEVELOPMENTS

- Weiss 1972: need both displacement AND phase sensitivity
 - Demonstrate that the test masses can isolated from seismic etc. noise such that the apparent displacement from GW will dominate, in some freq. range
 - Demonstrate required ability to measure a phase shift due to a GW
- Caltech 40m prototype
 - Did not have an optical sensing system that would work for LIGO
 - ...but did show good enough isolation of the masses >500 Hz; 1995
- MIT 5m prototype
 - Did have an optical system that resembled a very simplified LIGO
 - Was shot-noise limited (circulating power) to required level; 1999
- LIGO Lab and NSF convinced of need for these demonstrations
 - Virgo could use these as proof of principle as well

EUROPEAN OBSERVATORY PROPOSALS

- Germany and UK had plans for one or two km-scale observatories
 - A triangular configuration to be in Germany (1985) made good progress in the funding arena, until...
 The Berlin Wall came down (1989)
 - GEO-600 was a fallback, with significant local funding



- France and Italy conceived of Virgo (1989)
 - Opportunistic jump forward by Giazotto in Italy cast a die in European relations
 - Particle physics funding sources
 - Kernel of the Virgo 'experiment' Collaboration formed

MPQ 101

LIGO PROPOSAL (1989, 1994)

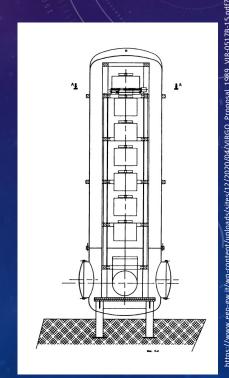
- Decision to jump from 40m to 4km (no intermediate step); Weiss' insight
- Two detectors, large separation, considered necessary
- National Science Foundation funding (under the Physics Division)
- Significant rescoping from Drever's initial vision to a realistic approach
 - 6 interferometers per site, rapid test-mass swap, etc.
 - ...replaced by 1 detector Livingston, and 1 full-length and one half-length at Hanford
- Joint MIT-Caltech work to prepare the proposal and defend it key to transformation to a single team, facilitated by Vogt and a 'circle the wagons' mentality
- Carried the message that detection was plausible, but that 'advanced detectors' would be inevitable and probably required
 - Infrastructure prepared for better sensitivity
- Significant activity in the NSF (Isaacson, Bardon) to support LIGO

Characteristic Wave Amplitude and Detector Sensitivity h

OBSERVATORY PROPOSAL EPOCH ASTROPHYSICS

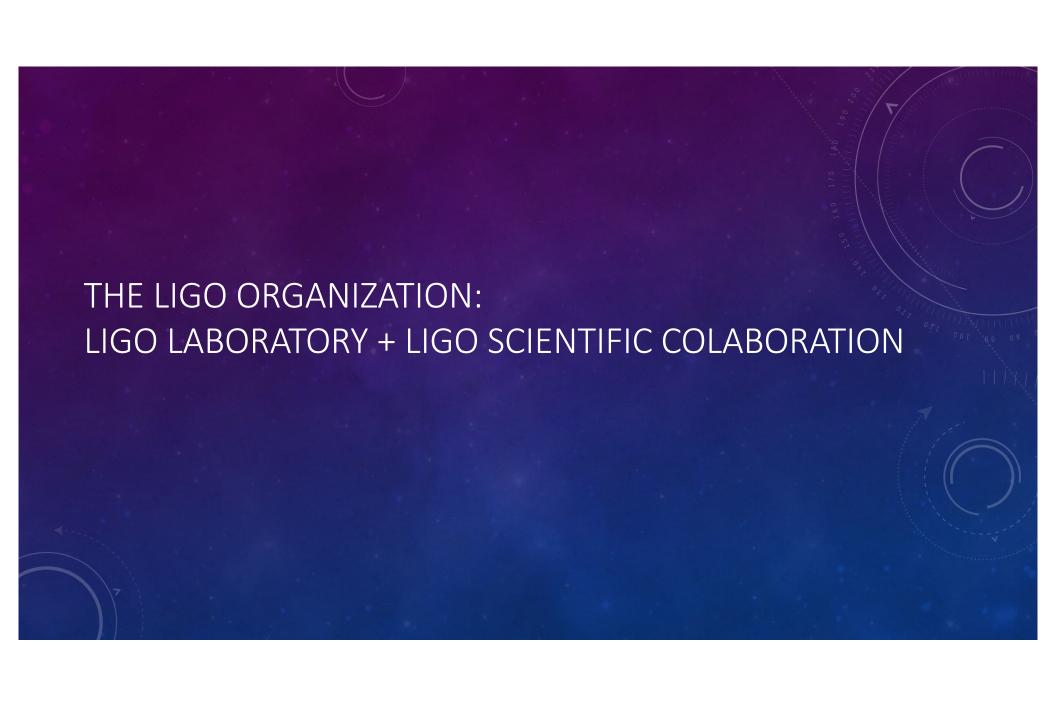
- Early efforts in data analysis
 - 1992 Sam Finn "Detection, measurement and gravitational radiation"
 - 1996 Bruce Allen's GRASP
 - 1995 LIGO Research Community; open to all, informal, led to...
- Most of those proposing and working on instruments mostly AMO, precision measurement, or 'project' people
 - Many really interested in the measurement science not GWs
- Astrophysics arguments to motivate the building of detectors from the 'external' astro community
 - Typically with one or several 'liaisons' to the Projects (e.g., Kip)
- Analysis, data quality, confidence, MMA developed in student theses and 'demonstration' observing runs using the prototypes
 - At MIT, 'science' was a necessary ingredient for a PhD

PROPOSAL EPOCH MEASUREMENT THEORY


- Thorne and Braginsky groups important for LIGO's success
 - For Virgo, one example is Jean-Yves Vinet and optics calculations
- Broader measurement theory community lively contributor
- Quantum measurement concerns and opportunities
 - Initially pretty simple stuff shot noise, modulation schemes
 - · Caves' insights triggered a slow tsunami of a more sophisticated view of quantum noise
 - Coupling of shot noise to radiation pressure via signal recycling
 - Now to frequency-dependent squeezing and speedmeters, etc.
- Interferometer configurations
 - Glasgow an important contributor Strain, Meers
- Thermal noise (Levin)
- 'Ordinary' development of designs enabled by theorists' insights
 - Light scattering (LIGO Baffles)
 - Huygen's principle applied to optical modeling

OBSERVATORY DESIGN AND CONSTRUCTION: LIGO

- Drever, and then Vogt, separated from LIGO
 - Did not conform to obligatory constraints of successful Project discipline
- Barish (Director) and Sanders (Project Manager), 1994 2006
 - Brought HEP Big Science Project insights and practice.
 - Key step forward.
- Robust support from the NSF; collaborative interaction with NSF
- Significant participation (intellectually, funding) from UK, Germany
 - N.B.: Continued fallout from the 'Bifurcation'
- Caltech was Project Lead; MIT key to design and realization, but minor engineering and management role
 - MIT (the Institution) uninterested in Project responsibilities;
 - Caltech did not want equal partnership
 - Continues to today (...and tomorrow)


OBSERVATORY DESIGN AND CONSTRUCTION: VIRGO

- Initially one group each in France and Italy; 1991 Collaboration formally established
 - Leadership alternating between Giazotto and Brillet
- 3km baseline (LIGO is 4km)
 - Provides a standing barrier to LIGO-Virgo equality in sensitivity
- Low frequency instrument design focus
 - Giazotto targeted GW signals from Pulsars ~10 Hz
 - (Note that Virgo and LIGO have now similar realized low-frequency sensitivity)
- Facility buildings tightly designed around isolators
 - Creates challenges for modifications
- Instrument, like LIGO, needed a series of fixes and upgrades
 - Was there a negative consequence of the lack of prototypes?

THE VIRGO ORGANIZATION

- Early Collaboration a handful of University/Institute groups in Italy and France focused on building the initial detector (1993)
 - Experimenters did not initially welcome others, e.g., astro/GR folks
 - Now many nations and groups involved, with Observational Science included (2004)
 - Basic Collaboration structure and 'charter' has remained the same
- Individual groups obtain funds for subsystems; design, build, deliver, commission, maintain (and maintain control of) hardware
- Top level Virgo design determined by consensus of groups in Virgo
- Establishment 2000 of European Gravitational Observatory (EGO) at site
 - Intended to be a source of technical maintenance, not a scientific partner
- Spokesperson has the role of establishing consensus for the instrument plan and key design issues (as well as now the Observational Science)
 - Only 'moral' authority; decision discussions are on their own time line

THE LIGO ORGANIZATION: LIGO LAB

- 1997: Creation of LIGO Laboratory
 - In parallel with the creation of LIGO Scientific Collaboration
- Caltech and MIT only. Not a "Collaboration"
 - Employees carrying out job responsibilities; hierarchical organization
- Observatory activities are Lab responsibility (and staff)
 - Visitors possible under Lab direction
- Caltech and MIT Campuses focused on R&D, engineering, and management
- NSF supports via 'cooperative agreement' with Caltech
 - MIT on subaward
 - 5-year funding cycle gives stability
 - Separate proposals for upgrades (e.g., Advanced LIGO)
- ...and Lab members are LSC members mutually supportive

(ASPEN CENTER FOR PHYSICS MEETINGS)

LES HOUCHES FOR LIGO

- Collection of meetings organized by Caltech/MIT (Syd Meshkov)
- Yearly from 1995 to 2001, molted into GWADW (Elba etc.)
- Focus was always on 'future detectors' aLIGO, then beyond
- First meeting simple reporting of R&D
- Second meeting discussion of need to focus on relevance (1996)
 - Choices of 'competing' ideas for design elements
 - Complemented by NSF asking LIGO Lab to review proposals
- This process led to the initial concept for Advanced LIGO
 - Key insight: Glasgow monolithic suspensions to manage thermal noise
 - > Setting requirements on seismic isolation for aLIGO
- A key event the focusing of R&D

THE LIGO ORGANIZATION: LSC

- 1997: Creation of LIGO Scientific Collaboration
- Not a significant source of deliverable instrumentation to the Observatories;
 Caltech and MIT produce installed equipment
- ...but LSC a very important contributor of R&D for new instrumentation
- Contributing to the science from LIGO the main criteria for membership
- Principal foci: Data Quality, Data Analysis, Astrophysical Interpretation
 - And a lot of bureaucracy to measure and monitor contributions
 - 'Payment' in authorship of LSC papers;
 24→18→ 13 month proprietary period
- UK, Germany, Australia strong elements in the LSC (...not in Virgo...)

LSC VS VIRGO APPROACHES TO INSTRUMENTATION

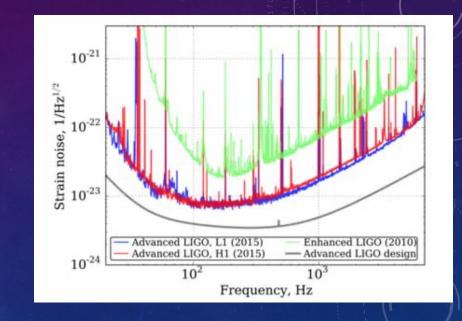
- Both recognize importance of engaging the hardware R&D community
- Virgo gives responsibility to the distributed community for deliverables to the detector
 - Serves to maintain a wide group of instrument scientists and funding
 - Profits (and suffers) from pan-European collaboration and social environment
 - Presents challenges for systems design, project management
- LIGOLab/LSC has a two-step approach
 - LSC Working Groups develop ideas (Initially at Aspen, 1996)
 - Presented to LIGO Lab when demonstrated to be useful for detector
 - LIGO Lab takes over engineering, fabrication, installation, ownership

CURRENT LSC, VIRGO, KAGRA -> IGWN

- All strain data are analyzed by all members of all 3 Collaborations
 - Papers are signed jointly
 - Instrument specific tasks calibration, data quality separate
- Successes: development of analysis pipelines, scientific interpretation, published papers
- Problems: different rules, separate decision-making processes, imbalances in computing contributions → inefficiencies and a sense of inequity in members
- Solution chosen: combine the 3 Collabs under one set of rules.
- ~2500 persons, checks on contributions, bureaucracy
- Hope is to reduce the highly variable levels and values of contribution
- Data remain proprietary for a period of a year+
- (For some future talk: not a long-term sustainable path!)

OBSERVATORY OPERATIONS AND UPGRADES

- LIGO and Virgo detectors have undergone a series of upgrades
 - Detection rate grows as cube of sensitivity!
 - Now, e.g., the most spectacular application of quantum sensing
- To date, all instruments stop and start observing together
 - May be an error from the greater astrophysics perspective
- Virgo and LIGO use many similar technologies
 - Seismic isolation approach very different (multiple pendulums vs. servos)
 - Virgo did not adopt a key optical upgrade ('mode-stable input/output cavities')
 - May entail a significant 'downtime' in coming years for Virgo
- Strategy for observation, interface with Astro world needs evolution


Key advances that enabled 1st detection:

- Reduction of stochastic forces
 - Seismic noise
 - Thermal noise
- Reduction of sensing noise
 - Lower-loss optics
 - Change in light coupling cavities
 - Increase in circulating power

ADVANCED LIGO

Key advances that enabled 1st detection:

- Reduction of stochastic forces
 - Seismic noise
 - Thermal noise
- Reduction of sensing noise
 - Lower-loss optics
 - Change in light coupling cavities
 - Increase in circulating power
 - ...after the comment yesterday about 'noise curves' I had no choice but to include some!

NEXT-GENERATION OBSERVATORIES: ET

- Einstein Telescope very well advanced in the funding/political/organizational senses
- Interestingly focus is again on low frequencies (~3 or 5 Hz)
 - Goals: pre-merger MMA guidance; IMBH
 - Drives the instrument underground to reduce gravity gradients arm length of 10 (or 15) km
 - Drives the plan for low- and high-frequency detectors, cryogenics
 - Brings expense and challenges and potential great science
- Instrument goals require significant technical advances -- very motivating for the ET instrument community!
- See differences north-south Europe once again
 - Sites, configurations, organization...cultural, or chance?
 - But this time UK and Germany may put focus on Europe, not US, for next-generation
- See tensions between 'the Collaboration' and 'The ET Organization'
 - Funding agencies need control; the Scientists want ownership
- See tensions ET vs Virgo
 - Limited number of skilled experimentalists;
 - Much more generous funding for ET than Virgo

NEXT-GENERATION OBSERVATORIES: CE

- Cosmic Explorer the planned next US Terrestrial GW Observatory
- Started much later than ET, less developed, smaller community
- A giant LIGO (40km instead of 4km); surface, room temperature
 - Low-risk approach for the observatory, and the initial detector
 - Generates less excitement for the instrument scientists
 - Plan on evolution of the detector over ~50-year lifetime of Observatory
- Ever closer connection CE-LIGO Lab
 - Anticipate a single entity in future
- Greatest risk and challenge: making constructive relationships with the indigenous peoples whose land will host CE
 - TMT as a cautionary tale

CE AND ET NETWORK

- Evident that the Observatories will need each other to leverage the data
 - ET initially conceived before first detections, and planned to be the 'one' next generation detector
 - Now likely that US-based CE will be built, as a single detector
 - 40km and 20km is the 'baseline' but unlikely to be funded
 - LIGO-India, using components from US LIGO in an Indian Observatory, will likely form the 3rd leg of the tripod; progress there has been slow
 - Could (should) be adopted by CE/ET as a central element of the next-generation program

CLOSING THOUGHTS – PERSONAL OPINIONS!

- We have learned how to design, build, and operate successful detectors
 - Net uptime with upgrades is suboptimal
 - Virgo's performance limited by its organization
- Have developed Collaborations which deliver excellent science
 - Early-career scientists can get lost in thousand-person organizations
 - Proprietary data and payment in authorship unattractive elements
- Have visions of technology to make 10x improvement
 - ET excessively complicated
 - CE may not have timely funding and site options

We have been well rewarded for solving our past and future challenges!