An introduction to Terrestrial Gravitational Wave Detectors

First International Latin American Conference on Gravitational Waves

15 September 2025

David Shoemaker MIT

Thanks to...

- Persons loaning slides and insights from the LVK
- The LIGO Lab MIT, Caltech, Hanford and Livingston Observatories
- The LIGO Scientific Collaboration; Virgo and KAGRA
- Cosmic Explorer
- The US National Science Foundation for extraordinary support and perseverance for LIGO

Gravitational Wave Properties

Binary Coalescence of two compact objects

GW generation in GR: lowest order radiation is quadrupole

metric quadrupole perturbation
$$h=\frac{2\,G}{c^4\,r}\ddot{I}^{\mu}$$

Two masses m in a circular orbit at a distance r create a periodic strain h in space

$$h = \frac{2Gm}{c^4 r} (2\pi f_{gw})^{2/3}$$

About once a week, a wave passes with this characteristic strain:

$$1.5 \times 10^{-21} \left(\frac{m}{30 M_{\odot}} \right) \left(\frac{400 \,\mathrm{Mpc}}{r} \right) \left(\frac{f_{gw}}{50 \,\mathrm{Hz}} \right)^{2/3}$$

3

 $h \sim (1 \text{ hair thickness}) / (\text{distance to Alpha Centuri})$

Stretching and squeezing of space-time

Amplitude of the gravitational wave strain is $h = \Delta L/L$ $\Delta L = h L$

Big L makes ΔL easier to measure; current detectors have L=4 km, so from our two-mass example $\sim 10^{-21}$ x $\sim 10^3 = \sim 10^{-18}$ m

Detection methods, Projects

CE-G25000LJ

LIGO and Virgo sensitivity

• LIGO-Virgo noise floor $h = \Delta L/L \sim 10^{-23}$ in a 1 Hz bandwidth

What is our measurement technique?

- Enhanced Michelson interferometers
- GWs modulate the distance between the end test mass optic and the beam splitter
- The interferometer acts as a transducer, turning GWs into photocurrent proportional to the strain amplitude

• For a given strain $h = \Delta L/L$,

 $\Delta P_{\rm GW} \sim h L P_{\rm laser} / \lambda_{\rm laser}$

Path length difference ΔL

What are the 'fundamental' limits to sensitivity?

Useful paradigm in considering limits to detector sensitivity

- Ability to measure the position of our test mass
 - » Shot noise
 - » Scattered light
 - » Laser light defects intensity, position, mode shape, frequency noise
 - » Electronics noise
- True noise motions of the reference surface on our 'free test mass' which can mask GWs
 - » Thermal noise
 - » Radiation pressure
 - » Environmental mechanical forces seismic, anthropogenic, weather
 - » Stray electric, magnetic fields
 - » Accidental noise forces from our control systems and sensors

We'll start with noise motions

Measuring $\Delta L = 4 \times 10^{-18} \text{ m}$

- **Thermal noise** -kT of energy per mechanical mode
 - A. Einstein, 1905
- Simple Harmonic Oscillator:

$$x_{rms} = \sqrt{\langle (\delta x)^2 \rangle} = \sqrt{k_B T / k_{spring}}$$

Distributed in frequency according to real part of impedance $\Re(Z(f))$

$$\widetilde{x}(f) = \frac{1}{\pi f} \sqrt{\frac{k_B T}{\Re(Z(f))}}$$

- Gather the x_{rms} Into a narrow region around resonance
- Push down thermal noise above and below resonance

Measuring ΔL = 4x10⁻¹⁸ m Internal motion

- Thermal noise kT of energy per mechanical mode
 - » A. Einstein, 1905
- Simple Harmonic Oscillator:

$$x_{rms} = \sqrt{\langle (\delta x)^2 \rangle} = \sqrt{k_B T / k_{spring}}$$

• Distributed in frequency according to real part of impedance $\Re(Z(f))$

$$\widetilde{x}(f) = \frac{1}{\pi f} \sqrt{\frac{k_B T}{\Re(Z(f))}}$$

- For Michelson mirrors:
- Low-loss materials, monolithic construction

Measuring $\Delta L = 4 \times 10^{-18}$ m Internal motion

- Optical reflective coatings on the mirrors introduce thermal noise
- Even in the best coatings, the dielectric optical coating has a large loss tangent
 - Some 10⁻⁴, compared to 10⁻⁸ for fused silica
- The Fluctuation-Dissipation theorem says this is where the greatest motion is found
- And: the coating is the surface that is sensed by the laser

coating elastic loss coating thickness
$$\phi \equiv \operatorname{Im} Y / \operatorname{Re} Y$$

$$\left\langle \Delta x (f,T)^2 \right\rangle \approx \frac{2k_B T}{\pi^2 f} \frac{d}{\underline{w}^2 Y} \phi(f)$$
beam radius

Y Levin Phys. Rev. D 57 659 (1998)

Basic Building Blocks: Pendulums

- Pendulum suspensions for optics which serve as test masses
- Need test masses to be 'free' in along the relevant measurement axis
- Terrestrial detectors operate in Earth's gravitational field
- Hang optics like a clock pendulum; above the resonant frequency, mirror is 'free'
- Inertia of the mass provides seismic isolation
 - » Single stage $(f_0/f)^2$; two stages $(f_0/f)^4$...
- Provides flexibility for alignment and actuation

Penultimate Mass

Optic

Multi-stage Isolation Performance 'Transfer function'

Multi-stage Isolation Performance

CE-G2500068 Brett Shapiro

20

Multi-stage Isolation Performance

CE-G2500068 Brett Shapiro

Multi-stage Isolation Performance

Brett Shapiro

Multi-stage Isolation Performance

CE-G2500068 Brett Shapiro

Cavity Length Control

Measuring $\Delta L = 4x10^{-18}$ m External Forces on test mass

- Seismic noise must prevent masking of GWs, enable practical control systems
- Not 'fundamental physics', but 'fundamental to success'
- aLIGO uses active servocontrolled platforms, multiple pendulums

Active and passive seismic isolation

Vertical Degree-of-Freedom

- Projection of 'vertical' motion along the optical axis if mirror is not normal to the laser beam
 - » Both from seismic noise AND from vertical thermal noise
 - → requirement on 'levelness' of the Observatory site.
 - → coupling growing linearly with length of detector
 - (but GW sensitivity also grows linearly; not a worry!)
- Coupling due to imperfections in suspension design
 - » E.g., unbalanced suspension fiber diameters, actuators which have an internal cross coupling, etc.

LIGO Facility Beam Tube Alignment

- Requirement to maintain a 1m clear aperture through the 4 km long arms
- A straight line in space varies in Earth height by 1.25 m over a 4km baseline
- A maximum deviation from straightness in inertial space of 5 mm rms
- Average angle with respect to local gravity of 3x10⁻⁴ radians

Measuring ΔL = 4x10⁻¹⁸ m External Forces on test mass

Ultimate limit on the lowest frequency detectors on- or under-ground:

Newtonian background – wandering net gravity vector;
 Forbiddingly large for ~3Hz and lower

Measuring ΔL = 4x10⁻¹⁸ m External Forces on test mass

- Advanced LIGO (and Virgo)
 expect to be limited by this noise
 source
 - » After all technical noise sources beaten down
 - » At low optical power (no radiation pressure noise)
 - » In the 10-30 Hz range
- We would *love* to be limited only by this noise source!
- Want to go a bit lower?
 Go underground.
- Want to go much lower?Go to space. LISA Mission

Mid-path summary

- Interferometry comparing the light travel time along (more or less) orthogonal arms can measure a passing gravitational wave
- The limits to sensitivity come from
 - » Undesired motions of the interferometer mirrors
 - » Limitations in our ability to measure the positions of the mirrors
- Thermal noise is one cause of undesired motions, managed through use of low-mechanical-loss materials and concentrating motion in a narrow band
- External forces must be very strongly filtered to make those forces negligible; pendulums are a very useful approach, complemented with servo-control systems
- Time-varying Newtonian gravity fields remain, and cannot be filtered only reduced through facility design (including underground) or sensed and subtracted (with limited success)
- ...Now: sensing the position of the masses

30

Interferometry

- Quantum measurement effects present both limits to sensitivity and means to improve the sensitivity
- First, increase the light power to reduce shot noise
 - » High power laser
 - » Low loss, high-precision optical components
 - » Optical topologies to increase circulating light power
 - » Optical topologies to distribute light power optimally
 - ...until radiation pressure starts to dominate
 - Standard Quantum Limit
 - » ...and our selected topologies couple shot noise and radiation pressure
- Second, use squeezed light to improve sensitivity
 - » Manage coupling between light intensity and light phase (pondermotive squeezing)
 - » Sneak around Heisenberg's uncertainty principle

CE-G2500068

Resolution of the optical sensing

 Shot noise – ability to resolve a fringe shift due to a GW (counting statistics;
 A. Einstein, 1909)

$$h_{
m sn}(f) = rac{1}{L} \sqrt{rac{\hbar c \lambda}{2\pi P}}$$

 Radiation Pressure noise —buffeting of test mass by photons increases low-frequency noise use heavy test masses!

Standard Quantum Limit

Frequency Dependent Squeezing

- Use squeezed light to balance precision in phase and amplitude
 - Playing with the Poisson statistics of the photons
- We can adjust the phase of the squeezed light used
 - Optical resonant cavity acting as a filter tuned to the transition from Radiation Pressure to Shot Noise
- Heisenberg's principle still holds at any given frequency, but we look more carefully at the amplitude at low frequencies and the phase at high frequencies

CE-G2500068

Adv LIGO Target Design Sensitivity, basic noise sources

Observatory Infrastructure

Vacuum System

 The 3 or 4km path of the laser from BeamSplitter to end mirror must be in an excellent vacuum

• Polarizability α of the remaining gas molecules induces path-length fluctuations; again, Poisson Statistics, and an effect proportional to square root of density $\rho^{1/2}$ along the path

$$h(f) \approx 4\pi\alpha \left(\frac{2\rho}{v_0 w_0 L}\right)^{\frac{1}{2}}$$

- Connect locomotive transformer to tubing for I²R heating to outgas
- 1 pump every 2km suffices!

Beam Tube Scattered Light

- Laser wavelength determines the minimum beam size after 4km propagation for 1064nm Nd:YAG, this leads to 10-12cm diameter for $1/e^2$ but in fact must be much further in the tails of Gaussian to 10^{-6}
- In addition, the mirrors are not perfect
 - "dust" and point defects
 - » Large-scale 'waviness' (~10 nm over 10 cm)
- → 1.2m diameter beam tube
- → baffles to catch scattered light

Many other 'technical' noise sources....

Some considerations for future Observatories

Length: The ultimate solution

- Design for low thermal noise, quantum limits, Newtonian and seismic noise
 - » Subtle, difficult instrument design challenges
- Length is great for sensitivity! Technically much easier than lowering noises
 - » Signals get larger, noises tend not until one is comparable to $\lambda_{GW}/2$
 - (Optimum for coalescence of BNS around 20km)

- One disadvantage: Cost.
- Length scaling dominates the cost for a detector

Noise	Scaling
Coating Brownian	$1/L^{3/2}$
Substrate Thermo-Refractive	$1/L^2$
Suspension Thermal	1/L, 1
Seismic	1/L, 1
Newtonian	1/L
Residual Gas Scattering	$1/L^{3/4}$
Residual Gas Damping	1/L
*Quantum Shot Noise	$1/L^{1/2}$
*Quantum Radiation pressure	$1/L^{3/2}$

Terrestrial detectors: Surface, or Underground?

- Burying the detector has unique advantages to improve the lowfrequency sensitivity; esp. reducing the Newtonian background
- The Science Case should drive the design decisions, modulated by cost
- Asking for both an optimal length and and a buried detector is probably unrealistic from a cost standpoint
- Next-generation observatories are a wonderful illustration
 - » Cosmic Explorer: 40km, surface detector, best reach
 - » Einstein Telescope: 10km, underground, best low-frequency
- Also practical considerations:
 - » Working underground, safely, is hard! Can expect slower progress in activities leading up to observation
 - » On the surface, Blocking migratory paths, occupying land belonging to indigenous peoples present very difficult puzzles to solve

CE-G2500068 42

Risk

- Different projects can adopt different risk levels
- Also different cultures, funding agencies, collaborations have different levels of tolerable risk
- More ambitious designs require more R&D to be successful to be realized, and may
 - Take more time to get working
 - » Lead to a more sensitive detector
 - » Make more significant steps forward in measurement science
 - » And be risky!
- Safety
 - » A different kind of risk, but human safety is very important
 - » One person seriously injured or worse is not only a human tragedy
 - it can also kill a project

43

System Engineering

- To find solutions which meet the observational science goals, and which fit in the other constraints just discussed, is challenging
- Requires compromises both in the initial design, and dynamically as the project advances
- Constant modeling of the sensitivity is crucial, along with modeling of schedule and cost
- A mixture of engineering, instrument science, observational science, and project management is needed to succeed

One more fundamental element in interferometer designs

Collaboration

- Table-top scientists precision measurement, laser, atomic started the field; tradition of small groups, small projects, and some competition
- Early general relativists, theorists, astrophysicists much the same
- Transformation when High Energy Physics types got involved
 - » Engineering, project organization, computing, analysis
- Funding agencies also saw a need for a shift
 - » There is a real skill in spending hundreds of millions of dollars!
- Goal pre-discovery was crystal-clear: Make a detection
- After the Collaborations formed and were stable, meta-collaborations:
 'The LVK' KAGRA, Virgo, and LIGO Scientific Collaborations all sharing data
 - » The science that is possible is qualitatively greater
 - The sociology of a (mostly) non-competitive environment nurturing and supportive
- LISA and Pulsar Timing also in collaborations/consortia
- Now perhaps 3000 persons worldwide
- Ready for the next generation of Observatories

46

LIGO 'Virtual' Tour

Hanford Corner building

otherhand.org

Laser Clean Room; extraterrestrials for scale

Vacuum chambers to protect and isolate optics

Inspecting mirror during fabrication

0.1 % coating uniformity

Test Mass Suspension

End-mirror assembly (humans removed before pumpdown)

Active and passive seismic isolation

Civil Construction: Beam Tube cover, foundation

Cover useful to protect against 2-ton masses at 100 km/hour

Onward

- Hope this introduction gives a good basis for the talks to follow
- Also email to dhs@mit.edu (but may need to be a bit patient for responses)