
How Third Generation Gravitational Wave Detectors Can Unveil
the True Degrees of Freedom of Dense Matter

SUMMARY
We argue that a third-generation detector network should have the capability of measuring the effects of
transport on the post-merger signal of a binary neutron star merger. This will provide the best chance of
detecting exotic phases like quark matter or hyperonic matter, which can be degenerate in the inspiral.

Key question(s) and scientific context

Unveiling the structure of the phase diagram of quantum chromodynamics (QCD) and finding the true degrees
of freedom of dense matter at densities achieved in compact stars is one of the great scientific challenges of
our time [Bogdanov et al. 2019; Maggiore et al. 2020; Evans et al. 2021a; Evans et al. 2021b; Lovato et al.
2022; Bogdanov et al. 2022]. Neutron star mergers offer a unique opportunity to explore the high-density, low
to intermediate temperature regime of the QCD phase diagram. One measurable property of dense matter is
the equation of state (EOS), on which much effort has been expended in the last decades, yielding hints at
the existence of a first-order phase transition from nuclear to quark matter inside heavy neutron stars [Annala,
Gorda, Kurkela, et al. 2020; Annala, Gorda, Hirvonen, et al. 2023]. However, it is well known that the EOS is not
the optimal observable for mapping the phase diagram of a material. Different phases are mainly distinguished
via their spectrum of low-energy excitations, which are most easily detected via differences in transport or
equilibration properties. This is especially true for models subject to the “masquerade problem”: For a class
of EOS for matter with a weak first-order phase transition from nuclear matter to quark matter, one can find
identical mass-radius curves and stellar structures, including tidal deformabilities, that are indistinguishable
from a purely nucleonic EOS without quark matter [M. Alford, Braby, et al. 2005; Wei et al. 2018].
Current research shows that a strong first-order phase transition with a large latent heat is unlikely to occur in
nature [Gorda et al. 2022], which makes it more likely that the true EOS falls in the “masquerade” parameter
space. This implies that constraints on the tidal deformability from the inspiral might be insufficient to truly
determine the degrees of freedom of dense matter. However, additional insights can be provided by dynamical
transport and equilibration properties probed in the post-merger phase, when the material is subject to strong
variations in external conditions. In the following, we provide two examples of transport phenomena, both
associated with (weak-) interactions acting on timescales comparable to the dynamical time of the post-merger
phase [M. G. Alford, Bovard, et al. 2018]. Quark matter in compact stars, if it exists, is most likely in a color
superconducting state, since the critical temperatures for the most commonly postulated color superconduct-
ing phases are estimated to be tens of MeV. One possible manifestation of the presence of superconducting
quark matter would be its flavor equilibration properties such as bulk viscosity and phase conversion dissipation.

Neutrino-driven bulk viscosity: During the merger, the flavor content (e.g., electron fraction) can be driven away
from its equilibrium value. Chemical equilibration due to neutrino interactions will establish a new equilibrium,
causing bulk-viscous feedback on the matter. The resulting bulk viscosity of quark matter has been studied in
various publications [M. G. Alford and Schmitt 2007; Schmitt and Shternin 2018] and shown to be significantly
different than the underlying processes in nuclear [M. G. Alford and Harris 2019; M. G. Alford, Haber, et al.



2021; M. Alford, Harutyunyan, and Sedrakian 2022] or hyperonic matter [M. G. Alford and Haber 2021].
Phase conversion dissipation: If nuclear matter is separated from quark matter by a first-order phase

transition then in a neutron star there may be regions of quark matter separated from nuclear matter by sharp
phase boundaries. In a neutron star merger, there will be strong density oscillations with frequencies in the kHz
range which cause these boundaries to move as fluid elements cross the critical pressure. However, the speed
at which the phase boundary can move is limited by the rate of weak interaction processes. These are needed
because the quark matter phase will have a different flavor content (e.g. more strangeness) than nuclear matter.
One of the effects of a phase boundary moving at a limited speed in an oscillatory system is a form of dissipation
called “phase conversion dissipation” [M. G. Alford, Han, and Schwenzer 2015]. Especially for masquerading
EOS models, this is a potential smoking gun signal for the existence of quark matter in mergers, since other
signatures [Most, Papenfort, et al. 2019; Bauswein et al. 2019; Weih, Hanauske, and Rezzolla 2020; Prakash
et al. 2021] may be absent in this case. It has been shown that this effect is capable of damping oscillations in
isolated stars on short time scales [M. G. Alford, Han, and Schwenzer 2015] and should therefore significantly
contribute to dissipation in a merger as well.

Potential scientific impact of XG detectors on the key questions

Transport and equilibration properties are key to distinguishing the phase structure of dense matter. The
best chance to see their effects is in the first fraction of a second after the merger. Transport effects like chemical
equilibration and the resulting bulk viscosity or phase conversion dissipation might allow us to unambiguously
detect exotic phases like quark matter or hyperonic matter in compact stars.

Benchmarks for XG detectors to enable the scientific impact

Bulk viscous damping and phase conversion dissipation can potentially shift the frequency spectrum of
post-merger gravitational waves [M. G. Alford, Bovard, et al. 2018; Most, Harris, et al. 2021]. Recent numerical
relativity studies have investigated the potential impact of these effects in nuclear matter: Refs. [Hammond,
Hawke, and Andersson 2023; Most, Haber, et al. 2022] placed upper bounds on the associated frequency shift
(∆f2 < 100Hz) of the dominant peak frequency, f2, in the neutrino-transparent regime. The effect may be
smaller in the neutrino-trapped regime[Zappa et al. 2022]. Bulk viscosity in quark matter could also affect the
recently reported suppression of the m = 1 mode of the post-merger gravitational wave signal [Espino et al.
2023]. To fully clarify these effect, and to also distinguish it from finite-temperature Raithel, Paschalidis, and
Özel 2021; Fields et al. 2023; Blacker, Bauswein, and Typel 2023 or magnetic field effects Ciolfi et al. 2017;
Chabanov et al. 2023, further numerical relativity simulations at much higher resolution may be required to
provide a full assessment. Assessing these effects with Cosmic Explorer will require a high sensitivity for
post-merger gravitational wave signals (e.g., strain noise ≲ 10−24Hz−1/2 in the 2− 3.5 kHz band).

SCIENTIFIC IMPACT OF XG DETECTORS
Detecting exotic matter like quark or hyperonic matter in neutron stars via transport phenomena.

XG DETECTOR AND NETWORK REQUIREMENTS

High-frequency sensitivity (e.g., strain noise ≲ 10−24Hz−1/2) between 2-3.5 kHz to accurately measure
the dominant post-merger frequency f2.
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