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1 Introduction

The length sensing and control (LSC) system used by LIGO to control the five length degrees
of freedom is a PDH scheme with two RF modulation frequencies [1]. Cosmic Explorer
does not need to use this LSC scheme, but it is a useful baseline concept at this time. This
note details some considerations for choosing the modulation frequencies and macro-
scopic1 lengths necessary to use such a scheme and gives an example design satisfying
these requirements starting with the “Crab” telescope design [2] as it is at the time of this
writing.

Section 2 describes the LIGO PDH sensing scheme and derives the required relationships
between the RF modulation frequencies and macroscopic cavity lengths needed for it to
work. A summary of these requirements is given in Section 2.4 where the example LSC design
is derived and summarized in Table 1. The design for LIGO laid out in Ref. [1] started with the
modulation frequencies chosen; however, starting from scratch, CE is not so constrained.
The approach taken here is therefore to start with the cavity lengths chosen to give the
telescopes of interest rather than to start with the modulation frequencies. Section 3 lists
some other requirements not considered here which will need to be analyzed before settling
on a final design.

2 Sensing Scheme

The LIGO LSC scheme uses two RF sidebands (denoted 𝑓1 and 𝑓2) with different resonance
conditions in the various optical cavities of the dual recycled Fabry-Perot Michelson inter-
ferometer (DRFPMI). In particular

(1) In the arm cavities, the carrier is resonant and the sidebands are nearly anti-resonant.

(2) In the power recycling cavity (PRC), the carrier and both sidebands are resonant.

(3) In the signal extraction cavity (SEC), the carrier is anti-resonant, the 𝑓2 sidebands are
resonant, and the 𝑓1 sidebands are nearly anti-resonant.

These resonance conditions require precise relationships between the cavity lengths and
modulation frequencies which are derived in Sections 2.1 and 2.2. Once the macroscopic
PRC and SEC lengths are chosen to satisfy these resonance conditions, a macroscopic
asymmetry, the Schnupp asymmetry, between the distances between the beamsplitter and
the two arm cavities is introduced so that some sideband power leaks from the PRC into the
SEC.2 The Schnupp asymmetry is chosen to maximize the 𝑓2 sideband power resonating in
the SEC as is described in Section 2.3.

1“Macroscopic” is taken to mean larger than the 1 µm laser wavelength in this note.
2The macroscopic Schnupp asymmetry is distinct from the microscopic difference in arm lengths in-

troduced between the two arms, the DARM offset, used to leak carrier light into the SEC to use as the local
oscillator for DC readout; the Schnupp asymmetry leaks RF sideband, rather than carrier, into the SEC.
Nevertheless, this imbalance does introduce noise couplings [3–5].

1



In the following, 𝐿p and 𝐿s are the distances between the PRM and the beamsplitter and
between the SEM and the beamsplitter, respectively; 𝑙x and 𝑙y are the distances between the
beamsplitter and ITMX and between the beamsplitter and ITMY, respectively. The length
of the PRC and SEC are defined as

𝐿prc = 𝐿p + 𝑙+, 𝐿sec = 𝐿s + 𝑙+, (1)

where 𝑙+ is the average distance between the beamsplitter and the ITMs. The Schnupp
asymmetry 𝑙sch is the difference in the distances between the ITMs and the beamsplitter in
both arms:

𝑙± =
𝑙x ± 𝑙y

2 , 𝑙sch = 2𝑙−. (2)

Note that these are optical, rather than physical, path lengths in this note and therefore
account for the ITM and beamsplitter substrates.

Since the language is confusing, the precise definition of a field being “resonant” or
“anti-resonant” should be used: if 𝐹 is the open loop gain of a field in an optical cavity, that
cavity is said to be

• resonant if arg 𝐹 = 2π𝑛, i.e. the round-trip phase is 0°

• anti-resonant if arg 𝐹 = (2𝑛 + 1)π, i.e. the round-trip phase is 180°

for any integer 𝑛.

2.1 Arm cavities

The reflection of a field of frequency ω off of the arm cavities is

𝑟a(ω) =
𝑟i − (1 − Li)𝑟ee−2iω𝐿a/𝑐

1 − 𝑟i𝑟ee−2iω𝐿a/𝑐
(3)

where 𝐿a is the arm cavity length, 𝑟i,e are the amplitude reflectivities of the ITM and ETM,
respectively, Li is the power loss of the ITM, and 𝑐 is the speed of light. In an interferometer
the arm cavities are strongly overcoupled with 𝑟e ≈ 1 and have low loss with Li ≪ 1. Thus,
to a good approximation,

𝑟a(ω0) = −1 (4a)
𝑟a (ω0 + Ω𝑖 ) = eiθ𝑖 ≈ 1, (4b)

where θ𝑖 is the phase that the 𝑖 th RF sidebands of frequency Ω𝑖 pick up on reflection from
the arm cavity. If the sidebands were exactly anti-resonant 2(ω0+Ω𝑖 )𝐿a/𝑐 = π and so θ𝑖 = 0.
In reality they will in general acquire a small phase shift. The example of Section 2.4, with
𝑚 = 76 and 𝑁 = 7, for instance, have θ1 = 0.43° and θ2 = −0.25°. It is possible for the
sidebands to pick up a large phase shift if they happen to be closer to resonance—the𝑚 = 67
and 𝑁 = 7 case with 𝑓1 ≈ 11 MHz and 𝑓2 ≈ 80 MHz have θ1 ≈ 136° and θ2 ≈ 39° to take
an extreme example—however, this should be checked and these choices of frequencies
avoided. Therefore, θ𝑖 can be taken to be zero in the following analysis.
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Figure 1: Signal flow diagram of the fields in the corner of a DRFPMI where 𝐸in is the field entering
the interferometer incident on the back of the PRM, 𝐸p is the field in the PRC, and 𝐸s is the field in
the SEC. The left most loop is the PRC and the right most loop is the SEC. The one-way phases ϕp
and ϕs correspond to the phase accumulated by a field propagating over the distances defined in
Eq. (1), and the Michelson reflection 𝑟m and transmission 𝑡m are given by Eq. (5). The gain for the
sidebands in the SEC,𝐺sec = |𝐸s/𝐸in |2, can be calculated by performing Gaussian elimination as
described in Appendix A and illustrated for the 𝑓2 sidebands in Fig. 4.

2.2 Power recycling and signal extraction cavities

The signal flow diagram for the fields in the corner of a DRFPMI is shown in Fig. 1. The
reflection and transmission of the Michelson degree of freedom formed by the beamsplitter
and arm cavities are

𝑟m(ω) = 𝑟a(ω) e−2iω𝑙+/𝑐 cos
(
ω𝑙sch
𝑐

)
(5a)

𝑡m(ω) = −i𝑟a(ω) e−2iω𝑙+/𝑐 sin
(
ω𝑙sch
𝑐

)
. (5b)

From Fig. 1, the open loop gain of the PRC is

𝐹p(ω) = −𝑟p𝑟m(ω)e−2iω𝐿p/𝑐 = −𝑟p𝑟a(ω)e−2iω𝐿prc/𝑐 cos
(
ω𝑙sch
𝑐

)
. (6)

Since ω𝑙sch/𝑐 ≪ 1, having the carrier be resonant in the PRC requires

arg 𝐹p(ω0) = π + π −
2ω0𝐿prc

𝑐
= 2π𝑛. (7)

Thus, in order for the sidebands to be resonant,3

arg 𝐹p (ω0 + Ω𝑖 ) = π + 0 + 0 −
2Ω𝑖𝐿prc

𝑐
= 2π𝑛, (8)

which requires
Ω𝑖 =

𝑐π

2𝐿prc
(2𝑛 + 1), 𝑖 = 1, 2. (9)

3We are here sloppy and use 𝑛, 𝑚, 𝑘 , etc. to denote arbitrary integers and aren’t careful about redefinitions
such as 𝑛 → 𝑛 − 1.
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Similarly, the open loop gain of the SEC is

𝐹s(ω) = −𝑟s𝑟m(ω)e−2iω𝐿s/𝑐 = −𝑟s𝑟a(ω)e−2iω𝐿sec/𝑐 cos
(
ω𝑙sch
𝑐

)
. (10)

Since we use resonant sideband extraction (RSE), the carrier must be anti-resonant4 in the
SEC which requires

arg 𝐹s(ω0) = π + π − 2ω0𝐿sec
𝑐

= 2π(𝑛 + 1). (11)

Thus, in order for the 𝑓2 sidebands to be resonant in the SEC

arg 𝐹s (ω0 + Ω2) = π + 0 + π − 2Ω2𝐿sec
𝑐

= 2π𝑚 (12)

which requires
Ω2 =

𝑐π

𝐿sec
𝑚, Ω1 ≠

𝑐π

𝐿sec
𝑘 (13)

for the 𝑓1 sidebands to also be non-resonant in the SEC.

2.3 Schnupp asymmetry

Once the sideband frequencies and macroscopic cavity lengths are chosen, the Schnupp
asymmetry must be introduced so that some sideband power can leak into and resonate in
the SEC. The gain of the 𝑓2 sideband in the SEC Eq. (27) is derived in Appendix A where it is
shown that, in the high finesse limit, the optimal Schnupp asymmetry which maximizes
the power of the 𝑓2 sidebands in the SEC is

𝑙sch =
𝑐

2𝑓2
√︁
FpFs

(14)

where the PRC and SEC cavity finesses are

Fp,s =
π

1 − 𝑟p,s
. (15)

This optimal asymmetry results in a gain for the 𝑓2 sidebands of

𝐺sec =
𝑃s
𝑃in

=
Fs
2π , (16)

4This terrible terminology is due to the fact that with the arms off resonance, i.e. in a dual recycled
Michelson interferometer (𝑟e = 0), the carrier should be “resonant” in the SEC to recover the signal extraction
condition because the carrier does not pick up the extra π phase shift on reflection of a resonant cavity. As
always, one should think about phases, and signal extraction requires the carrier to have a round-trip π phase
shift so that the open loop gain of the SEC is positive and the audio signal sidebands are enhanced above the
arm cavity pole when the round-trip phase again flips sign.
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Figure 2: Ratio of the power in the SEC to the input power for each sideband,𝐺sec, as the SEC length
is scanned for the parameters in Table 1.

where 𝑃s is the 𝑓2 sideband power in the SEC and 𝑃in is the 𝑓2 sideband power entering
the interferometer incident on the back of the PRM. The choice Eq. (14) corresponds to a
Michelson transmission for the 𝑓2 sideband into the SEC of

𝑇m = |𝑡m |2 =
π2

FpFs
=
𝑇p𝑇s

4 . (17)

Notably, this is significantly less than𝑇s which would correspond to “critically coupling” the
𝑓2 sideband into the SEC. The goal is to maximize the 𝑓2 power resonating in the SEC rather
than maximizing the 𝑓2 power transmitted through the AS port.

The optimal length given by Eq. (14) is a good approximation for high finesse cavities and
when the reflection phase from the arms θ2 is very small. However, phases of a few degrees
and/or higher order finesse corrections can shift this slightly and an exact calculation should
be made when choosing the precise length. Figure 3 shows the exact SEC gain as a function
of Schnupp asymmetry for the parameters of Table 1
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Figure 3: Ratio of the power in the SEC to the input power for each sideband,𝐺sec, as a function of
Schnupp asymmetry for the parameters in Table 1.

2.4 Summary and example

The resonance requirements Eqs. (9) and (13) on the RF sideband frequencies for a LIGO-like
LSC scheme can be summarized as

𝑓1 =
Ω1
2π =

𝑐

4𝐿prc
(2𝑛 + 1) ≠ 𝑐

2𝐿sec
𝑘 (18a)

𝑓2 =
Ω2
2π = (2𝑞 + 1) 𝑓1 ≡ 𝑁 𝑓1 =

𝑐

2𝐿sec
𝑚. (18b)

If Eq. (9) is satisfied for 𝑓1, it is automatically satisfied for 𝑓2 if 𝑓2 is an odd integer multiple
of 𝑓1. Equation (18) can be translated into equivalent requirements on the macroscopic
cavity lengths as

𝐿prc =
𝑐

4𝑓1
(2𝑛 + 1) (19a)

𝐿sec =
𝑐𝑚

2𝑓2
≠

𝑐𝑘

2𝑓1
. (19b)

The design of the LSC scheme used by LIGO described in Ref. [1] started with the sideband
frequencies fixed. These were chosen with 𝑓2 = 5𝑓1 to resonate in the input mode cleaner
(IMC), however there is no requirement that 𝑁 = 5 for this scheme to work. The LIGO
design thus started by choosing macroscopic cavity lengths to satisfy Eq. (19).
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Cosmic Explorer is less constrained at this time and can choose cavity lengths and
frequencies together. The design of the telescopes is of critical importance to the sensitivity
of the detector, in particular determining the the high frequency sensitivity and influencing
the difficulty of minimizing squeezing degradations and maximizing power recycling gains.
A reasonable strategy is thus to start by designing the telescopes and then to follow the
following steps.

(1) The difficulty in building the RF electronics needed to generate the sidebands dictates
that the sidebands be between about 10 and 100 MHz, so at no time should 𝑓1 or 𝑓2 be
chosen outside of this range.

(2) Since the SEC length directly determines the detector sensitivity and since the most
important cavity to mode match to the arms in order to reduce squeezing degradations
is the SEC [6], start with 𝐿sec fixed by the telescope design and choose 𝑓2 to satisfy
Eq. (18b) subject to Item (1), i.e. choose 𝑚.

(3) Set 𝑓1 by choosing an 𝑁 such that 𝑚/𝑁 is not an integer. Satisfying Item (1) means
that 𝑁 can be 3, 5, 7, or 9.

(4) With 𝑓1 set, choose 𝐿prc such that Eq. (19a) is satisfied with the PRC telescope design
in mind, i.e. choose 𝑛 so that 𝐿prc is close to that of the desired telescope.

(5) Choose the Schnupp asymmetry 𝑙sch to maximize the 𝑓2 power in the SEC. The optimal
Schnupp asymmetry is given by Eq. (14) to a good approximation for interferometers
such as CE with high finesse cavities. Note that this does not correspond to “critically
coupling” the 𝑓2 sideband into the SEC. This optimal 𝑙sch is shorter for higher 𝑓2.

(6) Consider other aspects of the detector design not directly related to the corner design,
some of which are described in Section 3, and iterate as necessary.

One example of modulation frequencies and cavity lengths chosen to satisfy Eqs. (18)
and (19) following the above strategy is shown in Table 1 starting with the “Crab” telescope
design [2] as it is at the time of this writing. Figure 2 shows a microscopic scan of the SEC
length illustrating the resonance conditions of the 𝑓1 and 𝑓2 sidebands in that cavity, and
Fig. 3 shows the SEC gain for both sidebands as a function of Schnupp asymmetry. This
exact calculation, rather than the approximation Eq. (14), should be used in general when
choosing precise parameters.

3 Other considerations

The following have not been considered but will also impact the exact details of an LSC
scheme.

(1) Both sidebands will need to resonate in the input mode cleaners (IMCs) and the IMC
lengths will need to be chosen accordingly. Some details about the choice of IMC
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Parameter Symbol Units Value
SEC Length 𝐿sec m 125.359
PRC Length 𝐿prc m 248.251
Arm Length 𝐿a km 40.0
ITM transmission 𝑇i % 1.4
SEM transmission 𝑇s % 2.0
PRM transmission 𝑇p % 3.0
𝑓1 modulation frequency 𝑓1 MHz 12.982
𝑓2 modulation frequency 𝑓2 MHz 90.873
Schnupp asymmetry 𝑙sch cm 0.7
Avg. BS-ITM distance 𝑙+ m 95.218
𝑓1 arm reflection phase θ1 deg 0.43
𝑓2 arm reflection phase θ2 deg −0.25
𝑓2 Michelson transmission 𝑇m % 0.02
𝑓2 SEC gain 𝐺sec — 50

Table 1: Example parameters satisfying the resonance conditions Eqs. (18) and (19) with 𝑚 = 76
and 𝑁 = 7 starting from the “Crab” telescope design at the time of this writing. The modulation
frequencies are rounded to the nearest kHz. A scan of the Schnupp asymmetry is shown Fig. 3; the
values of 𝑙sch,𝐺sec, and𝑇m are the optimal values that maximize𝐺sec. Distances are optical lengths.

lengths are given in Ref. [7] and this will have a large impact on the laser stabilization
and input optics design.

(2) The output mode cleaners (OMCs) need to sufficiently filter all RF sidebands. The
choice of RF sideband frequencies will thus influence the OMC design and squeezing
losses in the readout.

(3) The lower order higher order modes (HOMs) of the RF sidebands should not be
resonant in the arm cavities. The precise arm cavity geometry, which will be chosen in
part to ensure that the carrier HOM resonances are not in particularly bad locations for
squeezing degradations, will be a major factor determining this. Other considerations,
such as PI gains, will also need to be analyzed.

(4) The RF sideband HOMs should also not resonate in the PRC and SEC. LIGO currently
suffers from the power recycling gain of the 9 MHz sidebands dropping, and the
subsequent loss of error signals derived from these sidebands, as the interferome-
ter thermalizes. This is due to 9 MHz HOMs becoming resonant in the PRC as the
Gouy phase of the cavity changes during thermalization. While it is hoped that the
introduction of the CHETA subsystem [8] will keep the interferometer in a constant
thermal state, the CE LSC design should nevertheless ensure that it has a robust, even
if different, sensing scheme for all thermal states, and this will depend on the Gouy
phases of the cavities.

(5) No analysis of the angular sensing and control (ASC) scheme as been made. LIGO
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Figure 4: Gaussian elimination of the signal flow diagram Fig. 1 for the 𝑓2 sidebands. The closed
loop SEC propagator 𝐻s is given by Eq. (21), the coefficient 𝑟m is given by Eq. (23), 𝑐− = cos 2ϕ−, and
𝑠− = sin 2ϕ−.

uses the same RF sidebands discussed here (𝑓1 = 9 MHz and 𝑓2 = 5𝑓1 = 45 MHz) used
for the LSC error signals to derive the ASC error signals and has added additional
sidebands at 13𝑓1 = 118 MHz. An analysis of the ASC sensing matrix will need to be
made, which will depend heavily on the SEC and PRC Gouy phases, to evaluate the
choice of sideband frequencies and the necessity of adding any additional sidebands.
The SEC and PRC Gouy phases will, in turn, be chosen in large part to reduce squeezing
degradations and increase power recycling gain.

(6) The process of lock acquisition should be considered since different error signals
will be used during this period. It is also necessary to reach the desired thermal state
which may require different error signals.

A Schnupp asymmetry and SEC gain details

In this appendix we derive the power of the 𝑓2 sideband in the SEC and compute the optimal
Schnupp asymmetry that maximizes this power. The left diagram in Fig. 4 shows the partially
reduced signal flow diagram of Fig. 1 for the special case of the 𝑓2 sidebands where the Eq. (18)
resonance conditions have been used to simplify the propagators. This can be done easily by
noting that the round-trip propagation of the carrier in the SEC is π and that ϕsec for the 𝑓2
sideband must then be chosen to have the open-loop gain of the SEC be positive. Similarly,
ϕprc is chosen to have the open-loop gain of the PRC for the 𝑓2 sideband be positive when
the round-trip phase of the carrier is 0. The Michelson transmission and reflection Eq. (5)
for the sidebands are

𝑟m(ω0 + Ω2) = e−2iϕ+ cos 2ϕ− ≈
(
1 − 2ϕ2

−
)

e−2iϕ+ (20a)
𝑡m(ω0 + Ω2) = −ie−2iϕ+ sin 2ϕ− ≈ −2iϕ−e−2iϕ− (20b)

The right diagram of Fig. 4 shows the signal flow diagram after eliminating the SEC loop
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where the closed loop gain of the SEC is

𝐻s =
1

1 − 𝑟s𝑐−
=

1
1 − 𝑟s

1
1 + 𝑔sϕ2

−
(21)

where
𝑔s,p =

2𝑟s,p
1 − 𝑟s,p

. (22)

Note that 𝑔s,pϕ2
− is not in general small since 𝑔s,p ≫ 1. The reflection term 𝑟m shown in

Fig. 4 is
𝑟m = 𝑐− − 𝑟s𝑠

2
−𝐻s = 1 − 2ϕ2

−
1 + 𝑔s

1 + 𝑔sϕ2
−

(23)

and the closed loop gain of the PRC is, using the 𝑓2 resonance conditions,

𝐻p =
1

1 − 𝑟p𝑟m
=

1
1 − 𝑟p

1
1 + 𝑔pϕ2

−
1+𝑔s

1+𝑔sϕ2
−

. (24)

The transmission of a field incident on the back of the PRM into the SEC, with the 𝑓2 sideband
resonance conditions, is therefore

𝐸s
𝐸in

= −i𝑡p𝑠−e−i(ϕprc+ϕ+)𝐻p𝐻s = −ie−i(ϕprc+ϕ+) 𝑡p
1 − 𝑟p

1
1 − 𝑟s

2ϕ2
−

1 + ϕ2
−(𝑔s + 𝑔p + 𝑔s𝑔p)

. (25)

In the high finesse limit using the definition of finesse Eq. (15)

𝑔s,p =
2Fs,p
π

(
1 − π

Fs,p

)
≈

2Fs,p
π

, 𝑡 2
s,p = (1 − 𝑟s,p) (1 + 𝑟s,p) ≈

4𝑟s,p
𝑔s,p

(26)

and the SEC gain is thus

𝐺sec =

���� 𝐸s
𝐸in

����2 ≈
𝑔p𝑔 2

s
𝑟s

ϕ2
−

(1 + 𝑔p𝑔sϕ2
−)2 =

(2Fp
π

) (
2Fs
π

)2 ϕ2
−(

1 + 2Fp
π

2Fs
π ϕ2

−

)2 . (27)

The ϕ− that maximizes𝐺sec is therefore

ϕ− =
Ω2𝑙sch/2

𝑐
=

1
√
𝑔p𝑔s

, (28)

which leads to Eq. (14). Plugging this into Eq. (27) gives the maximum SEC gain of Eq. (16),
and the Michelson transmission at this optimal length is

𝑇m = |𝑡m |2 = sin2 2ϕ− ≈ 4
𝑔p𝑔s

, (29)

which leads to Eq. (17).
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