
What we need from XG observatories to unveil the birth, life and

death of massive stars – Part 2: life

SUMMARY
The next-generation of gravitational-wave (GW) observatories have the potential to solve key questions

about massive stellar evolution. In this second part, we focus on their ability to help us understand

binary interactions, in particular, place constraints on mass transfer episodes: the stability of mass

transfer, the conservativeness and the physics of common envelopes. To make significant progress on

these topics, we argue that we need a near-complete population of ≳ 1,000 binary neutron star (NSNS)

mergers out to z ∼ 1 to probe Common Envelope Physics, and a near-complete population of BHBH

mergers out to z ∼ 2 to probe the stability of mass transfer

Key questions in massive binary stellar evolution: 2. How do massive stars evolve and interact?

Massive stars impact every part of modern astrophysics; their ejecta, shocks, outflows, and ionizing

photons shape their environments, they trigger and regulate star formation, and drive the chemical evolution of

the Universe that enables the formation of elements like oxygen, and the more complex molecules necessary

to facilitate life. Despite their importance, much the formation, lives, and explosive deaths of massive stars

is still a mystery. They are rare and short-lived, making it extremely challenging to observe a statistically

significant population, and learn about their properties, especially in environments outside our Milky Way. GW

astrophysics provides a new frontier to study the lives and deaths of massive stars throughout cosmic history

and can help solve key questions in massive star evolution: 1. How do massive stars form?, 2. How do massive

stars evolve and interact?, and 3. How do massive stars end their lives?

Here we discuss how XG detectors can help address: How do massive stars evolve and interact?



Potential scientific impact of XG detectors

More than ≳ 70% of all massive stars are born with at least one gravitationally bound companion and will

interact by exchanging mass (a mass transfer phase) in its life [17, 13]. These interactions drastically alter the

evolution of the stars and can lead to a plethora of phenomena such as stellar mergers, (ultra) stripped-stars,

x-ray binaries, millisecond pulsars, and the formation of a Double compact object (DCO): a binary system

consisting of two compact objects each either a BH or NS [16, 19, 21]. It is of critical importance to better

understand the underlying physical processes of such evolutionary stages including the stability of mass transfer,

common envelopes (CE) physics, and angular momentum and mass loss processes during mass transfer. GW

astrophysics can play a unique role in probing these intermediate phases of massive star evolution which is

otherwise challenging to constrain.

Mass transfer can broadly be classified as dynamically stable or unstable, but the details of mass-transfer

stability are complex and unknown (e.g., [25, 15, 10]). During stable mass transfer or RLOF, the companion

star can possibly accrete (part of) the donated companion envelope (cf. [11]). How much of the donated mass

is accreted by its companion, and the specific angular momentum carried by the transferred mass, determine

the orbital evolution [e.g., 18]. On the other hand, unstable mass transfer is expected to lead to a ‘common

envelope’ phase (see e.g., reviews by [7, 8]). This will dramatically shrink the binary orbit, and lead to very

close orbit systems, or even stellar mergers. Recent studies have shown that the different physical processes

leave imprints on the expected properties and rates of GW sources [e.g., 20, 14]. GW observations can thus

be a unique probe of the physics of these evolutionary stages in the lives of massive stars. We mention two

examples below.

SCIENTIFIC IMPACT OF XG DETECTORS
Constraints on the physical processes underlying Common Envelope phases, and an ‘unbiased’ catalog

of post-common-envelope properties of NSNS GW sources.

Constraints on the fraction of binary black hole (BHBH) and black hole-neutron star (BHNS) systems

that formed through only stable mass transfer phases versus experiencing at least one common-envelope

phase. Constraints on mass loss and angular momentum loss during mass transfer phases
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Benchmarks for XG detectors to enable the scientific impact

1. A complete population of 5,000 NSNS Mergers to z ∼ 1 as Probe of Common Envelope Physics

Despite the many uncertainties in the modeling of formation pathways of GW sources [e.g., 2, 12], there

is broad support in the literature that the majority of NSNS mergers experience a common-envelope phase

and that detections of NSNS mergers are a good probe for common-envelope physics [3, 1, 4, 9, 24, 22].

Figure 1 gives an example showing the majority of recent literature studies expect almost all NSNS to go

through a common-envelope phase. However, common-envelope phases are still a complex and one of the most

uncertain physical processes [e.g., 5] meaning that addressing Common Envelope physics relies crucially on

having a complete and unbiased survey of systems that experience a CE event. Crucially, only XG detectors

are expected to provide a complete and unbiased population of NSNS mergers out to redshift z ∼ 1

consisting of ≳ 5000 sources with sub-percent measured mass properties [6]. The mass measurements

can be used as a proxy for the post-CE masses, which can be combined with approximations for the post-CE

separations (using luminosity distances and delay times) as a unique population for CE physics.

2. A near complete set of BHBH mergers out to redshift z ∼ 2 and BHNS out to redshift z ∼ 1 to answer

whether the majority of BHBH and BHNS mergers undergo unstable mass transfer phases.

For BHBH and BHNS mergers, on the other hand, there is an increasing debate about whether the majority

of GW mergers experience a common-envelope phase or instead only undergo stable mass transfer phases (see

Figure 2). It is expected that experiencing a stable or unstable mass transfer phase will lead to unique imprints

on the properties of the BHBH and BHNS mergers as well as on the typical delay time distributions [e.g., 23].

XG GW detectors uniquely can provide sub-percent measurements of the masses of a near-complete population

of BHBHs out to redshift 2, and for BHNS systems out to redshift 1 [6]. Combined with a mapping of the

supernova physics this will provide an understanding of the pre-supernova masses of binary stars forming GW

sources, this will provide unique insights in mass transfer physics.

XG DETECTOR AND NETWORK REQUIREMENTS
A near-complete population of ≳ 1,000 NSNS Mergers out to z ∼ 1 to probe of Common Envelope

Physics

(Sub-)percent measurements of the masses of a near-complete population of BHBHs out to redshift

z ∼ 2, and BHNS systems out to redshift z ∼ 1 to probe the stability of mass transfer.
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Figure 1 Fraction of GW NSNS detections that are expected to experience a common-envelope (CE) phase
for different population synthesis simulations (models) from the literature. In all models, the vast majority of
NSNS mergers are expected to experience a CE phase.
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Figure 2 Fraction of GW BHBH detections that are expected to experience a common-envelope (CE) phase
for different population synthesis simulations (models) from the literature. Most importantly, different models
disagree strongly on whether the vast majority of BHBH mergers are expected to experience a CE phase.
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