
Resolving Phase Transitions in the Neutron Star Equation of State

SUMMARY
Neutron star mergers provide a unique laboratory for studying the densest phases of matter. Certain
classes of low-density phase transitions will require the sensitivity of XG detectors to resolve from the
inspiral, while higher-density phase-transitions can be probed only with post-merger gravitational waves.

Key question(s) and scientific context in brief

At neutron star densities beyond the nuclear saturation density, ρsat, new phases of matter can be present. These
include hyperonic matter (containing net strangeness) or even de-confined quark matter. Understanding at what
densities these phase transitions occur, and whether they are of first-order, has the potential to provide novel
insights into the different phases of matter under the strong force, and in particular into the phase diagram of
quantum chromodynamics. In this Letter, we outline different scenarios for first-order phase transitions occurring
at low or high densities above ρsat, which can only be constrained by inspiral and post-merger gravitational
wave (GW) signals detected with XG-detectors. These include tidal deformability doppelgängers (Raithel and
Most 2022b) , equations of state (EoS) with significant stiffening at high-densities, (Raithel and Most 2022a) ,
and deconfined quark matter in the post-merger (Most, Papenfort, et al. 2019; Most, Jens Papenfort, et al. 2020;
Most, Motornenko, et al. 2023) .

Potential scientific impact of XG detectors and required capabilities

Figure 1: Differences in Λ resolvable with one year of
aLIGO (green), A+ (orange), and CE (blue) (Carson et
al. 2019) for doppelgänger EoS models. CE sensitivity
will be needed to distinguish these models for NS masses
> 1.2M⊙. Adapted from Raithel and Most 2022b.

Tidal deformability doppelgängers: Current infer-
ences of the neutron star EoS from the inspiral GW
signal rely on the robust mapping between tidal de-
formability, Λ, and the underlying EoS. In a recent
work, Raithel and Most 2022b have shown that for
a class of phase transitions occurring at significantly
different densities, the tidal deformability can be al-
most identical across the entire neutron star mass
range (see top row, Fig. 1). These tidal deformabil-
ity doppelgängers thus predict nearly identical inspi-
ral GW signals, despite having very different nuclear
properties. Resolving the small differences in Λ of
these doppelgängers will require precision measure-
ments, ∆Λ ≲ 10, of the tidal deformability (bottom
row, Fig. 1). For these particular types of models,
differences in tidal deformability are largest at small
masses. Thus, if there exist significant populations
of low-mass neutron stars (M ∼ 1.2M⊙), and if the
crust EoS is constrained precisely to relatively high densities from nuclear theory, then it may also be possible
to resolve these phase transitions with the sensitivity of A+ (bottom row, Fig. 1).



Figure 2: Mass-radius relations for EoSs with signifi-
cant softening or stiffening at high-densities. The mod-
els are colored by fpeak for a GW170817-like event.
Adapted from Raithel and Most 2022a.

Phase transitions and post-merger GW: On the
other hand, other types of phase transitions – e.g.,
from a high-density softening in the EoS caused by the
emergence of new degrees of freedom, or a stiffening
caused by a transition to a quarkyonic state of matter –
can leave a unique signature in the post-merger GWs,
even when the inspiral GWs are indistinguishable.
Measuring these signatures will require sensitivity at
high frequencies, ∼2-3.5 kHz (Shibata 2005) . The
frequency at which the spectrum of post-merger GWs
peaks for a massive neutron star remnant, fpeak, has
been shown to depend quasi-universally on the radius
of intermediate-mass neutron stars (Baiotti and Rez-
zolla 2017; Bauswein and Stergioulas 2019; Bernuzzi
2020; Radice, Bernuzzi, and Perego 2020; Vretinaris,
Stergioulas, and Bauswein 2020) . However, the ap-
pearance of strong first-order phase transitions can
lead to smaller radii at high NS masses, or for quarkyonic matter to larger radii. As a result, extrapolating prop-
erties from the inspiral of intermediate-mass neutron stars to the high-density phase is not entirely universal.
Indeed, violation of quasi-universality has been proposed as smoking gun signatures for strong first-order phase
transitions (Bauswein, Bastian, et al. 2019) , as well as for significant stiffening in the EoS (Raithel and Most
2022a) , which can be associated with substructure in the speed of sound (Tan et al. 2022) . Differences in fpeak

can range up to ∼500 Hz depending on the high-density behavior of the EoS (Raithel and Most 2022a) (see
Fig. 2).
In addition, the appearance of quarks at finite-temperature in the post-merger is sufficient to cause frequency
shifts in the post-merger GW signal, including an early collapse to a black hole (Most, Papenfort, et al. 2019) .
This will sensitively depend on the type of phase-transition (Weih, Hanauske, and Rezzolla 2020; Prakash et al.
2021) , and in turn the nuclear matter content (Most, Jens Papenfort, et al. 2020) .
Thus, if the XG network has sufficient sensitivity in the 2-3.5 kHz band to resolve fpeak, it may be possible to
test for new degrees of freedom or exotic phases of matter, such as quarkyonic phases, in the dense-matter EoS,
akin to nuclear collider experiments (Most, Motornenko, et al. 2023) .

SCIENTIFIC IMPACT OF XG DETECTORS
1. Distinguishing low-density first-order phase transitions, if present, in inspiral GWs
2. Testing for the emergence of new degrees of freedom or exotic states, such as quarkyonic phases

of matter, at high densities, with post-merger GWs

XG DETECTOR AND NETWORK REQUIREMENTS

Sensivity to measure the tidal deformability to within ≲ 10, from a population of mergers
High-frequency sensitivity between 2-3.5 kHz to accurately measure fpeak
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