
PROJECT SUMMARY
Overview:
The Laser Interferometer Gravitational-Wave Observatory (LIGO) in the US and the Virgo detector in 
Europe have ushered in a new era in the exploration of the Universe. In addition to resolving decades old 
questions in physics and astronomy they have begun to reveal a population of astronomical objects no one 
suspected to exist. Yet, observing the Universe with gravitational waves is still in its infancy. The next 
generation of ground-based detectors currently being conceived – in particular, the Cosmic Explorer (CE) 
in the US and Einstein Telescope (ET) in Europe – will compile a census of sources in almost the entire 
Universe, with the hope of answering many questions in fundamental physics and cosmology. However, 
data from a network of such detectors will pose analysis challenges that will take years to resolve. A 
series of progressively more difficult data challenges is proposed to confront data analysis hurdles 
presented by the next generation of gravitational-wave detectors (3G). These challenges will (i) inform 
the progress that would need to be made in the development of new algorithms for efficient detection and 
parameter inference, (ii) help estimate the computational resources required to fully exploit the science 
potential of 3G detectors and (iii) build and engage a community of researchers that is ready to explore 
the Universe with this new observational window. 
 
Intellectual Merit:
LIGO and Virgo discoveries are impacting many areas of astrophysics and fundamental physics. We now 
have a new tool for measuring cosmological parameters and observing neutron stars and black holes 
throughout the cosmos and inferring their population properties. Gravitational waves could inform us 
about the state of matter in extremely dense regions and key to Multimessenger Astronomy. Mergers of 
stellar-mass black holes and neutron stars have allowed the most stringent tests of Einstein’s theory of 
gravity. Current detectors are only sensitive to sources in a small volume of the local Universe. It is 
difficult to overstate discoveries that will be made with detectors that are able to survey almost the entire 
Universe for compact binary mergers. Such improvements in sensitivity are unprecedented in astronomy 
but opportunities for resolving some of the fundamental questions in physics today are huge. These 
include the discovery of new particles and fields beyond the Standard Model, understanding the equation 
of state of dense matter, finding black holes that may have formed in the primeval Universe and detecting 
signals from the earliest moments of the Big Bang, to name a few. The proposal will provide an 
opportunity to check if science results from the signal-rich data of future detectors can be reliably 
extracted and trigger research in the development of new analysis and inference algorithms that can deal 
with overlapping multiple signal types and strengths, of varying duration and cadence, all buried in data 
with nonstationarities and gaps. 
 
Broader Impacts:
LIGO discoveries have the potential to attract school students to STEM subjects. However, not everyone 
is benefitting from this surge in new discoveries. In rural PA schools lack adequate resources to train in 
computer science, which hinders the education of key concepts in science and math. This is counter to the 
nation’s need for a workforce with skills in computing to pursue careers where STEM subjects drive 
innovation and wealth creation. Students from underrepresented minorities and women are most affected 
by this imbalance. The objective is to provide access to high-performance computing in school districts in 
rural Pennsylvania, especially women and underrepresented minorities. Central to this proposal is also the 
training of graduate students. The existing partnership between Syracuse University and California State 
University Fullerton (CSUF) aims to significantly increase the number of students from underrepresented 
groups, in particular  Hispanic and Latino/a students, in gravitational-wave astrophysics.  The proposed 
research will provide support and training for CSUF students who wish to engage in third-generation 
detector research, and provide opportunities at MIT, Penn State and Syracuse. PIs will also work with 
undergraduate students to prepare the next generation of scientists and they will take part in simple data 
challenges. Students will be recruited, e.g., via the MIT UROP, which encourages undergraduates to 
become involved with research as early as possible. We will actively work to specifically recruit students 
from underrepresented minorities, low socioeconomic and first generation backgrounds. The proposed 
work naturally presents opportunities to train in Bayesian inference, machine learning, etc., skill sets of a 
successful scientist and pave the way to multiple, well-sought after jobs. 
 



Project Description–Collaborative Proposal: A Data Challenge for the Next Generation of
Ground-Based Gravitational Wave Detectors‡

1 Overview
The objective of this collaborative proposal is to develop a mock data challenge for the next generation of
ground-based gravitational-wave observatories (3G) Cosmic Explorer (CE) [2] and the Einstein Telescope
(ET) [3]. 3G observatories will have unprecedented sensitivity to detect compact binary mergers from an
epoch when the Universe was still in its infancy and will routinely detect sources with stupendously large
signal-to-noise ratios bringing precision to gravitational-wave astronomy [4–6].7 An order of magnitude
greater redshift reach and access to extremely high-fidelity signals will deliver new discoveries while al-
lowing independent precision tests of nuclear physics, cosmological models, alternative gravity theories,
and astrophysical scenarios of compact-object formation and evolution [8]. Beyond the hundreds of thou-
sands of binary coalescence signals that 3G observatories will detect each year, they will observe weak
but persistent radiation from isolated neutron stars, rare bursts from supernova, and other transient sources
and stochastic backgrounds. Current analysis tools, waveform models and detector calibration will not be
adequate in the 3G era. The sheer volume of observed signals will demand novel algorithms for extracting
the science in signal-rich 3G data set. The algorithms must be able to keep up with the rate of detection
and must handle the challenges of overlapping signals that range from very weak to extremely loud. The
impact of statistical and systematic errors and the computational costs of 3G data analysis must be studied
and quantified. Addressing these technical challenges is essential if 3G detectors are to deliver science at
the forefront of fundamental physics and astronomy[6].

Mock Data Challenges The 3G network will consist of observatories of different topologies and sensi-
tivities, distributed in different parts of the globe. Mimicking data with astrophysical signals that encode
the expected physical effects and from a global network of detectors is a complex task. Challenge data
must simulate the proposed 3G network as closely as possible, with non-stationary and non-Gaussian de-
tector noise to develop analysis algorithms that are robust against such artifacts. We have assembled a team
that has the deep understanding of detector responses, source dynamics, waveform models, cosmological
effects, astrophysical evolution and distributions of sources needed to deliver the proposed challenge data
(see, in particular, Sec. 4). We propose producing data sets of increasing complexity over the period of the
proposed research and making these data freely available to the global scientific community. Playground
data sets will be provided that allow scientists to develop and tune algorithms and challenge data sets with
specific scientific objectives will allow participants to test their analysis pipelines. We will also provide
tools for data access and simple investigations on the data sets.

The proposed data challenges will stimulate the development of the new algorithms that are necessary
to ensure that 3G observatories can deliver their promised scientific goals [9–12]. These goals that will
form the core objectives of the challenges include: extracting the equation of state of ultra high-density
matter,13 probing quark deconfinement phase transitions,14 measuring the dark energy density and equa-
tion of state parameters [9,15], ability to detect and characterize black hole mergers at redshifts as large as
z ⇠ 10–50 [5, 16],12 determining the star formation rate as a function of redshift [17, 18], and discovering
any violations of general relativity (GR) [11]. The challenges will also allow more accurate estimates of
the computational resources needed to deliver these scientific goals [19].

Impact The project is designed benefit a range of researchers at different stages of their careers, with
junior scientists encouraged to participate. We expect the project to trigger new discoveries in data science
(e.g. combining Bayesian inference and machine learning to measure the parameters of thousands of
signals20), to improve modelling of waveforms,21 and identify subtle physical effects (e.g. non-general

‡See Ref. [1] for citation convention (blue and red square brackets and superscripts) used in this proposal.
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Figure 1: Detection efficiencies ✏ (i.e., fraction of all signals detected at a given distance) and rates DR of an
upgraded version of the LIGO-Virgo-KAGRA network in Advanced+ sensitivity (HLVKI+), the same but with LIGO
detectors in Voyager sensitivity(VK+HLIv) and a 3G network (ECS) plotted vs redshift z. The circles (squares) are
for events with SNR ⇢ � 10 (⇢ � 100). The thick, black lines are the cosmic BNS and BBH merger rates.

relativistic propagation, tidal effects in neutron stars, cosmological acceleration) buried in the shape of the
extracted signals. Simpler challenges will also be a training ground for STEM students in high school who
are currently Freshmen but would be leading the analysis of data when 3G observatories come online. In
summary, the proposed research will train a new generation of graduate, undergraduate and school students
in the frontier area of gravitational-wave astronomy. The statistical tools and analysis techniques used in
the training will be applicable in many other areas of physical and biological sciences and engineering.

2 Intellectual Merit
Gravitational-wave observations have ushered in a new era of discoveries in physics and astronomy. The
hundreds of binary coalescence events detected22–26 by the Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO) and the Virgo observatory have already had a massive impact on our understanding of
the Universe: the discovery of heavy black holes with masses in excess of 50M�,27–30 large mass ratios31

and neutron star-black holes32 have challenged astrophysical models of their formation. Constraint on
the relative speeds of electromagnetic and gravitational waves have ruled out many33 modified theories of
gravity invoked to explain dark energy, setting new directions for research.34–37 Double neutron star co-
alescences are unique laboratories for exploring the nature of ultradense matter [38, 39],13, 40, 41 including
the discovery of new phases of quarks beyond hadrons.14, 42 Compact binaries are standard sirens, giving
us a new tool for accurately measuring distances43–47 and an independent tool for cosmography. New,
strong-field tests of GR have so far vindicated the theory in a regime where it was never tested before.48–51

This is just the beginning. The detectors that are currently operating52 and their planned upgrades,53, 54

are only able to survey the local Universe z < 1 for mergers of binary neutron stars and z < 3 for black
holes (see Fig. 1). 3G observatories have the potential to observe black hole mergers beyond the epoch of
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the formation of first stars at z ⇠10–50 and binary neutron stars from epochs when the Universe was only
a few hundred million years old. A network of CE and ET observatories will provide a crystal clear picture
of sources in the near-by Universe—for example, reveal many subtle signatures of dynamical spacetimes
and state of matter at the highest densities anywhere in the Cosmos—and at the same time survey binary
black holes when the Universe was only fifty million years old. Such a leap in sensitivity is unprecedented
in astronomy and it is difficult to imagine the landscape of discoveries and the potential to unveil new
physics.

With the CE Horizon Study Document now complete [6] and ET included in the European Strategy
Forum on Research Infrastructures Roadmap,55 the time is now ripe for a quantitative understanding of the
data analysis challenges posed by 3G observatories. The endorsement of R&D for Cosmic Explorer by the
recently concluded Decadal Survey for Astronomy and Astrophysics 2020 (Astro2020)56 is testament to
strong community support for the next steps in the design of CE. With a series of increasingly sophisticated
data challenges, the goal of this proposal is also to mobilize the global gravitational-wave community to
engage in the design of new search algorithms, source characterization techniques and computational
paradigms that are suitable for a signal-rich data in the 3G era.

3 Proposed Research
The main objective of this proposal is the production of data that mimics the output of a 3G observatory
network, which will be fundamentally different from what we have encountered so far. The Gravitational-
Wave International Committee recommended a series of 3G data challenges.57 In its priority area New
Windows on the Dynamic Universe, the Astro2020 Decadal Survey states that “new, coordinated advances
in several areas are required to unlock the workings of the dynamic universe” including:56

Strong software and theoretical foundations to numerically interpret the gravitational wave
signals from merging compact objects to extract new physics in the extremes of density and
gravity, and ensure easy user access to the wealth of data on the dynamic universe and to
model and interpret astronomical sources whose physical conditions cannot be replicated in
laboratories on Earth.

This proposal is a critical step towards accomplishing this task. It would be impossible to mimic the full
complexity of a 3G data set but we will simulate data containing an astrophysical population of different
signal types and strengths, lasting for varied amounts of time, embedded in instrumental and environmental
noise artifacts. We will set up a series of data challenges to vet that key science goals can be extracted
from data that contains overlapping signals, non-stationarities and gaps and understand the algorithmic
and computational needs of a 3G network. The deliverables of this effort (Sec. 3.7) would advance our
understanding of the true potential of 3G observatories and inform where future efforts would be needed.

3.1 State of the Art
Mock data challenges have played an essential role in validating analysis pipelines, understanding system-
atics, and identifying unforeseen problems. The most comprehensive challenges to date are (i) Numerical
Injection Analysis (or NINJA) [58, 59], (ii) Mock LISA (Laser Interferometer Space Antenna) Data Chal-
lenges (MLDCs)60 [61, 62], and (iii) the ET Mock Data Challenges [63, 64].

NINJA The NINJA project was critical in integrating numerical simulations of binary black holes in
data analysis. Without these efforts understanding LIGO’s seminal discovery65 would have been far from
complete. The large masses of the companion black holes in GW150914 meant that the signal in the LIGO
band was dominated by the merger phase of the evolution which is captured accurately only with numerical
relativity simulations. Furthermore, this effort led to a systematic calibration of analytical models against
numerical simulations that led to tests of GR in regimes of the theory that were unexplored before.49, 66 It
is important to note that the first efforts began almost a decade before the discovery.
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LISA data challenges MLDCs began a decade before the then LISA’s launch date and helped identify
a number of problems in a signal-rich data set. Specifically, the importance of global fitting to multiple
signals67 was recognized and now forms the backbone of LISA data analysis strategy.68 They also demon-
strated the significance of higher multipole modes in resolving the sky position [69] of sources and their
luminosity distance, both critical for precision cosmology [70]. With a launch date in 2034, LISA Data
Challenges71 have restarted to develop software tools that will form the basis of a future data analysis
system. Our proposed effort with the help of collaborators deeply involved in the MLDCs will help iden-
tify where algorithms developed for LISA data analysis can inform the development of 3G algorithms.
However, the data-analysis challenges faced by the 3G network are very different from those posed by
LISA. The science challenges that we propose (e.g. extracting the dense matter equation-of-state, popula-
tion properties of neutron stars and stellar-mass black holes) are distinct from LISA science and require a
separate dedicated effort. 3G algorithms will need to cope with a data set containing ⇠ one binary merger
every few minutes, creating a “popcorn” background of signals. These signals sweep over the entire de-
tection band from a few Hz to a kHz, whereas in LISA signals from most white dwarf binaries—the main
source of confusion background—remain in single frequency bins over the entire observation period. 3G
data will contain occasional bursts from intermediate-mass binary mergers, supernovae, magnetar quakes,
etc., in a data set containing thousands of weak binary coalescence signals. Extracting these rare events is
critical as they could bring us a wealth of information from sources that cannot be observed in other ways.
The ability of analysis algorithms to identify and measure the parameters of rare events in 3G data needs
to be demonstrated, and this task is distinct from those of the MLDC.

ET Mock Data Analysis ET mock data challenges have been relatively modest. They have largely
focused on demonstrating the detection of compact binary coalescence signals and stochastic backgrounds
in an array of three detectors in the ET triangular configuration but avoided analysis challenges posed by a
detector network or the motion of the Earth. Even so, it helped demonstrate that detection of overlapping
signals will not be a serious challenge [63], while identifying problems posed by long-duration signals. In
particular, it showed the difficulty of filtering data at frequencies as low as ⇠ few Hz when binary neutron
star inspirals last for tens of hours. This was solved in the second data challenge [64]. Recently, several
studies have been carried out to assess how the problem of parameter estimation is affected by the presence
of one or more overlapping signals.72–74 However, so far there is no clear understanding of the challenges
posed by parameter estimation of hundreds of overlapping signals nor of extracting specific science targets
such as cosmological parameters, the equation of state of dense matter, etc. The current proposal aims to
address precisely these latter set of questions together with collaborators involved in ET.

3.2 Objectives
Compact binaries are the loudest gravitational-wave sources and the only ones observed so far. These
sources will, therefore, be the dominant population in the mock data challenges. However, we also aim
to simulate other signals such as supernova bursts, continuous waves and ‘surprise’ sources to challenge
analysis algorithms. In order not to overwhelm the participants, we will begin with simple challenges
consisting of only one source type and progressively increase the complexity. Each data challenge will
ask participants to answer specific questions as discussed in Sec. 3.4-3.6. The specific objectives of the
proposal are to release and evaluate three data challenges:

1. Challenge A: Three data sets, each one year long, containing only compact binary signals:
(a) binary neutron stars, (b) binary black holes, (c) neutron star-black hole binaries.

2. Challenge B: Three, year-long data sets, containing binary merger signals but with different cos-
mological parameters; also supernova bursts and continuous waves but not part of the challenge.

3. Challenge C: Same as Challenge B but add continuous waves and supernova burst signals to the
challenge and non-general relativistic signals aimed at totally new discoveries.
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3.3 Methods and Implementation Plan
3G network and response functions This Section introduces common elements of the challenges in
Sec. 3.4-3.6. For the purpose of data challenges we assume that the 3G network consists of two CE detec-
tors at fiducial locations in the US and Australia and one ET at the current location of the Virgo detector
in Italy75 but it will be possible to assess single-detector detection strategies. The outcome of this study
will be insensitive to the actual locations of the detectors. The data sets will properly account for detec-
tor locations and orientations, their noise spectral densities and deploy appropriate antenna patterns and
response functions e.g., ET would consist of responses for the three V-shaped detectors in ET’s triangular
topology.76 The detector response will account for the motion of the detector relative to the sky and include
gaps in the data to mimic detector down times, and constructed in the long-wavelength approximation.77

Noise background The statistical nature of the noise background is determined by detector sub-systems,
the physical environment of the detector, and a myriad other factors. To capture this complexity, we will
use both simulated noise data sets as also the publicly available LIGO/Virgo data to mimic the types of gaps
and noise transients seen in real data. These data can be time reversed to remove signals and recolored to
mimic the expected noise spectrum of 3G detectors. Collaborator Craig Cahillane will help us to generate
a data that that will mimic 3G detectors as closely as possible. Cahillane is a research scientist at the LIGO
Hanford Observatory and an expert on calibration, detector noise, and detector performance [78–80]. The
LIGO Laboratory has committed one month of Cahillane’s time, supported by Caltech funds available for
3G research, to work on this project (see letter from Reitze). While the noise background in detectors at
geographically well-separated locations can be assumed to be uncorrelated, the background in the three
ET responses will not be so due to common seismic oscillations and gravity gradient fluctuations.81 We
will work with the ET instrument science team to simulate the expected correlations.

Waveform families: An important element of the challenges is the family of waveforms added to the
data. For a given signal family, we will use the models that incorporate most of the physics. For example,
in the case of black hole binaries this would mean the inclusion of higher modes, spin precession, merger
and ringdown phases of the signal82 and, possibly, overtones in the ringdown83, 84 or eccentric orbits85

for some of the challenges. Binary neutron star waveforms will initially include tidal effects86 and then
extend to include post-merger signals in later challenges.87 The neutron star-black hole waveform family
will include precession, as would binary black holes and maximum allowed mass ratios.88 Continuous
waves would be monotonic with a slowly varying first and second derivatives of the frequency.89 Burst
signals will be sampled from a catalog of supernova waveforms.90–94 In some cases, we will alter the
waveforms depending on the specific data challenge: e.g., propagation effects different from GR, tidal
effects from different equations of state, or alternative polarizations, as the challenge demands and deploy
the most sophisticated waveform models available at the time.

Distribution of intrinsic and extrinsic parameters While significant uncertainty still exists, the dis-
coveries of the LIGO and Virgo detectors have already provided clues about the mass and spin distribution
of black holes in binaries.22 Less is known about the distribution of mass and spins of neutron stars in
binaries, owing to the smaller number that have been discovered to date. We will use the most up-to-
date knowledge at the time of data generation to inform the distribution of the intrinsic parameters of the
compact binaries we simulate. For binary black holes, we will consider at least three sub-populations,
mimicking formation in galactic fields, dynamical environments, and black holes formed from Population
III stars. Formation in dynamical environments will include the possibility of repeated mergers, which
can result in a tail of the population with higher mass and higher spins [28].95–97 The mass distribution of
binary neutron stars will reflect the fact that most neutron stars have masses in the range [1, 2] M�.98–100

Whenever possible, our choice for the spin distributions will be informed by population synthesis
codes.101, 102 In particular, we will assume that compact binaries formed in galactic fields will have spin
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vectors which are roughly aligned with the orbital angular momentum, whilst dynamical formation can
yield any spin direction with the same probability. The most uncertain distribution we have to fix is that
of the spin magnitudes, a quantity that LIGO and Virgo’s data is only starting to offer a handle on. We
will consider a distribution of the spin magnitude consistent with the data from LIGO/Virgo’s entire third
observing run, which should be published before this award starts. The spin magnitude of neutron stars
will be uniform up to the spin magnitude of the fastest pulsar discovered to date (716Hz, for B1937+21103).
Both the orbital orientation and the sky position of the sources will be uniform on the sphere.

Merger rates: Compact binary sources in the data set will have redshift distributions informed both by
theory and numerical simulations, and by the measurements made with 2G detectors. Specifically, we will
assume that the formation rate of compact objects in galactic fields follows the Madau-Dickinson star-
formation rate.104 A time-delay distribution informed by population synthesis codes will be implemented
to account for the delay between the formation and the merger of a binary.105 Different prescriptions will
be used for time-delay distribution of black hole and neutron star binaries.106–108 We will use numerical
simulations of globular clusters as a probe for the merger rate history in dynamical environments.109 Sim-
ilarly, the rate of mergers from Population III stars will be informed by published numerical analysis110

and peak at redshifts larger than 5.111 The redshift of each source will be converted into a luminosity
distance—necessary for the evaluation of the gravitational-wave signal that is added to the data—using
the most recent cosmological model of the Planck collaboration,112 save for some of the data sets in Chal-
lenges B and C below, where three different cosmologies will be considered as a part of the data challenge.
The value of the local merger rate for compact binary coalescences will be informed by the most recent
constraints113, 114 or revised ones that may become available at the time of data challenges.

Organization and evaluation of data challenges We plan three data releases, in the 9th, 15th, and 21st
months of the grant period. Accompanying each release will be a specific set of challenges (see Sections
3.4-3.6). The first challenge will last for 6 months, while the second and third, being more complex, will
last for 9 months each. The signal-rich mock data will provide ample opportunities to explore the science
potential of single and multiple detectors alike, check when multiple detectors are critical and investigate
what science would be lost without a network. Participants will be asked to report on at least one of
the four specific challenges to qualify for evaluation, but they will also be encouraged to report as many
other findings as they wish. The CE consortium wiki pages will be used to communicate details of the
challenges with a clear description of how the data sets were generated, what waveform models were used
for injections, the location and orientation of detectors, a list of star formation models etc.

We will develop criteria and tools for evaluating and ranking the submissions, taking into account
expected systematic biases, accuracy with which the findings agree with the injections but also the compu-
tational resources used in the analysis. The outcome of the evaluation will be reported in the CE consortium
web page. Each challenge will be summed up in a collaboration publication and participants will be en-
couraged to write papers describing their own analysis in greater detail. Publications resulting from this
effort could be used to justify the science case of future 3G proposals.

Playground and challenge data sets Two months before each data release, a playground set, together
with the software used to generate it, will be published to facilitate participants to generate their own
stationary or non-stationary data to test their software and to fix any bugs found during the testing period.
We will also publish the parameters of a subset of loud and quiet injected events in challenge data sets
but revealing only a range of times and parameters instead of the actual values. This is because not
all participants will be interested in running a search pipeline some would want to draw inferences from
detected signals. This strategy would mean inference runs can begin immediately after data release without
waiting for signals to be identified by search pipelines. At the same time there will be enough ambiguity
in the information revealed that search pipelines would still be useful in addressing analysis issues. Data
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sets will each be year long to allow for the discovery of continuous waves and stochastic backgrounds but
participants will be able to accomplish most challenges with smaller amount of data.

Data formats, access, storage and curation Challenge data sets will be created and distributed in two
formats widely used in the field: HDF5 and Frame format. These formats are used by the Gravitational-
Wave Open Science Center115 to distribute the public data from the LIGO and Virgo observatories and so
are well documented and widely supported by open-source software. All data sets will be published into
the CERN Virtual Machine File System (CVMFS)116 at Syracuse University for wide dissemination and
access. Distribution via CVMFS will allow the data to be accessed from any Open Science Grid, LIGO
Data Grid, or XSEDE computing centers used by participants in the challenge. CVMFS also provides
support for installation on desktop machines, allowing challenge participants to directly explore the data
sets without the need to access a computing center. CVMFS separates the distribution of file metadata
from the data, allowing the full data set to be indexed with very little bandwidth and then transferring (via
the widely-supported http protocol) the data when it is accessed. Caching pins the requested data to the
physical storage of the requesting device for fast and efficient access. The data set will be preserved for at
least three years beyond the end of the mock data challenge, or longer if storage allows.

Analysis tools to be made available The data sets will be developed using existing open-access analysis
toolkits (e.g. PyCBC [117], GstLAL,118 and LALSuite119). Libraries and algorithms developed to create
the data sets will be released to the community through these open source libraries. Public repositories
on the Cosmic Explorer GitHub will be used to host any software that falls outside the scope of existing
open-scource data analysis tools (e.g. high-level codes specific to the preparation of the data sets, or codes
used to analyse and compare data challenge results). Challenge participants will be required to make the
software that they use to analyze the data available with the results of their analysis to encourage open and
public dissemination of methods as well as results.

3.4 Challenge A
The first challenge will be a fairly simple one to encourage wider engagement but also to allow participants
to test their pipelines on specific detection and measurement problems. It should be possible for the
challenges in this set to be tackled by adapting open-access software, e.g. PyCBC [117], and GstLAL118

especially since Challenge A will avoid overlapping signals by choosing a low merger rate. As an example,
for a lower frequency cutoff of 5 Hz, a pair of 1.4M� neutron stars at z = 2 coalesces in ⇠ 103 s. Given
that the median rate of binary neutron star mergers is113 R = 320 yr�1 Gpc�3, there will be a signal in
band once every five minutes within that redshift and thousands of overlapping signals in a year’s worth of
data. A twenty times smaller rate assures that less than ⇠ 1% of signals overlap and yet provide thousands
of events to study the population and tens of events with signal-to-noise ratio in excess of 200 for a careful
study. The same event at z = 0 would last for hours but occur less frequently. Thus, the merger rate would
need to be chosen carefully to avoid overlapping signals. Challenge A goals are given in the box below.

CHALLENGE SET A:

Three data sets, each containing only one population of compact binary merger signals: Binaries
composed of (i) two neutron stars, (ii) two black holes, and (iii) a neutron star and a black hole.

1. Recover the properties of ten loudest events in different data sets (e.g., masses, spins, sky
position, polarization, and distance).

2. Determine merger rates and reconstruct the star formation rate as a function of redshift.
3. Demonstrate low-latency analysis to generate early warning alerts.
4. Identify any binary black hole merger events beyond a redshift of z = 10, 20, 50.
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Parameter recovery Bayesian parameter estimation [120] of long-duration binary neutron star events
is algorithmically straightforward but computationally demanding [121] and require acceleration tech-
niques.122 Signals that begin at lower frequencies stay longer in band and break certain parameter degen-
eracies. Binaries with black hole companions would display spin-induced precession and excite higher
modes, both of which are readily observable in longer signals. Such effects help measure spin magnitudes,
orbital orientation and luminosity distance—parameters that are crucial to test binary formation models.123

Star formation rate 3G observatories could accurately determine the merger rate as a function of red-
shift.124 To derive the star formation rate from the merger rate requires a ‘transfer function’ that folds
in a lot of unknown physics [17]. Mock data will be based on one of several competing star formation
models124 and the challenge will be to determine which one was used in the simulation.

Low-latency analysis Observing electromagnetic emissions right at the onset of a binary neutron star
merger would have a massive scientific payoff125 and vigorously pursued.125, 126 Binary neutron stars at
400 Mpc would last for a couple of hours in 3G detectors and can be detected several minutes before
coalescence compared to tens of seconds that is possible with the current generation of detectors. This
challenge will require not only detecting the events before merger but also determining their sky posi-
tion.127 This challenge will be streamed to mimic online analysis possibly repeated in Challenge B/C.

Events at high redshift One of the biggest puzzles in cosmology is the origin of supermassive black
holes that are suspected to reside at galactic cores.128 The first black holes might be the end product of
population III stars.129 3G observatories should be able to detect binary black hole mergers from that era.
The challenge would be to not only detect them but to unambiguously determine their redshift from the
luminosity distance and ascertain that they are indeed low-mass black holes at high redshift and not more
massive ones in the nearby Universe [16].

3.5 Challenge B
Challenge B will continue with compact binary coalescence signals but increases complexity in two ways:
(i) the merger rates will match the best estimates at the time of the challenge, and (ii) data sets will contain
all three classes of compact binary coalescence events and bursts and continuous waves. This implies that
the fraction of overlapping signals will be far greater than in Challenge A, requiring more sophisticated
data analysis tools. Challenge B will comprise three different data sets, each with distinct cosmologies and
neutron star equations of state.

CHALLENGE SET B:

Three data sets corresponding to universes with distinct cosmological models, containing compact
binary merger signals of all types at the expected rates, supernova bursts and continuous waves.

1. Estimate the parameters of overlapping binary coalescence signals.
2. Measure cosmological parameters used in the three different data sets.
3. Estimate the strength of the stochastic background due to the population of merger events.
4. Find the cold equation-of-state of dense matter used in different data sets.

Overlapping signals 3G data will contain thousands of overlapping signals from compact binary merg-
ers. This is an entirely different analysis challenge than what is currently encountered but similar to what is
expected in LISA130, 131 or future upgrades of LIGO and Virgo. This data set will allow to propose and test
source characterization algorithms that can account for the simultaneous presence of several signal classes
in a segment of data being analyzed. Such algorithms must also be able to properly characterize the noise
spectral density of the detectors, removing or accounting for foreground contamination. Continuous waves
and supernova bursts are included as a warm up exercise but are not part of this challenge.
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Cosmological parameters The scientific community has started using gravitational-wave data to set
constraints on the Hubble parameter44, 45, 132–137 [138], though not yet in way that is competitive with
electromagnetic-based methods.112, 139 Owing to the large number and high signal-to-noise ratio of sources
in 3G detectors, we expect far better constraints. At the same time, the much larger reach of 3G detectors
implies that one can measure the Hubble parameter and also determine the dark matter and dark energy
densities, and the dark energy equation of state. Challenge B will include the release of 3 data sets,
each with a different value of the cosmological parameters: one set consistent with the latest Planck
measurement,112 one consistent with the SHOES measurement,139 and one in between. The community
will have to show if and how accurately one can measure the cosmological parameters, dealing with
selection effects arising in gravitational-wave140, 141 and electromagnetic-wave142 measurements.

Neutron star equation of state The late inspiral phase of the a binary merger involving a neutron star
offers precious insights into the equation of state of dense nuclear matter [38, 39].13, 40, 41, 143 Some of the
binaries in the data set will have signal-to-noise ratios of the order of thousands, enabling precise mea-
surement of the neutron star equation of state.144 This challenge will allow the community to verify how
precisely and accurately one can measure the equation of state of neutron stars, and how that information is
correlated with other quantities of interest such as the neutron star mass distribution,145 as well as quantify
any observed biases due to the presence of other signals.

Astrophysical foreground The sum of all the sources (especially binary neutron stars) which are too
weak to be individually resolved, will create an astrophysical background that might hinder studying or
setting upper limits on the cosmological gravitational-wave background.146 This foreground must thus be
removed, or at least accounted for, to measure the properties of a primordial background. Various methods
have been proposed to perform this measurement in advanced detectors data.122, 147–149 These data sets
will enable extensive testing of next-generation algorithms on a large and realistic data set.

3.6 Challenge C
The final challenge will build on the experiences gained in the first two challenges, extend to new classes
of gravitational-wave sources, and introduce deviations from current models to test the community’s abil-
ity to probe new physics with 3G detectors. Core-collapse supernovae signals will be included and binary
neutron star signals will be extended to add post-merger signatures based on available numerical simula-
tions. A data set will be provided in which the signals and their propagation deviates from GR. The third
data release will also provide an opportunity to release or re-release data sets based on lessons learned
from the first two challenges The main goals of Challenge C are listed in the box below.

CHALLENGE SET C:

Same as set B but data sets will in addition contain short bursts, weak continuous waves and one or
more data sets might could contain signals that violate GR.

1. Discover and measure the parameters of supernova signals and continuous waves.
2. Look for quark-deconfinement phase transitions and explore the hot equation-of-state with

binary neutron star events.
3. Verify if GR is consistent with the data sets (e.g. polarization different from GR).

Supernovae and continuous signals 3G observatories will be able to observe the gravitational waves
from neutrino-driven core collapse supernovae out to a few hundred kiloparsecs and the magnetorotation-
ally driven explosion signals out to 2 Mpc.90–94 A variety of methods for the extraction of information
from supernovae signals have been proposed that target the bounce signature, the post-bounce neutron star
running, and longer term effects like the standing accretion shock instability or ring-up of the protoneu-
tron star.150–156 A challenge data set will be released that contains a variety of core-collapse signals from
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available numerical simulations, to explore the ability of 3G detectors to measure the differential rotation
profile of the progenitor stars, the nuclear equation of state, and the physics of the core collapse mecha-
nism. The problem of detecting persistent radiation from deformed neutron stars is well understood.157

The challenge, however, is if such algorithms would work with frequent and loud foreground transients.

Phase transitions and the hot equation of state A binary neutron star can have four possible outcomes:
(i) the prompt formation of a black hole, (ii) the formation of a hypermassive neutronstar that collapses to
a black hole; (iii) the formation of a supramassive neutron star that collapses to a black hole; or (iv) the for-
mation of a stable neutron star. The post-merger signature provides additional constraints on the properties
of the merging stars, the nature of any electromagnetic counterpart, and unique insight into the hot nuclear
equation of state. If a first-order hadron-quark phase transition at supranuclear densities exists, it may give
rise to a stable extended quark matter core in the postmerger remnant and will change the gravitational
wave signature of the post merger.42 Numerical simulation of neutron star mergers remains challenging,
but enough information exists to allow the creation of signals that stitch post-merger signatures to inspiral
signals. Challenge C will include a data release that tests the ability of 3G detectors to extract physics
from the post-merger waveform.

Deviations from GR 3G detectors could detect deviations from GR, e.g., in loud binary black hole merg-
ers, which will be measured with exquisite precision, or in the most distant mergers as gravitational waves
propagate through the observable universe [158–160].161–164 Challenge C will include binary black hole
signals that deviate from GR by including e.g. scalar-tensor modes, dispersion effects, or “hairy” black
holes whose modes and/or overtones deviate from those predicted by GR.165 The data set will challenge
the community to find small but presently not excluded deviations166 and evidence for new physics.

3.7 Deliverables, Work Plan, Measure of Success
The main deliverables are the data challenges, associated software and publications. The postdoctoral
fellow (P) and graduate students (G1, G2) will collaborate on common tasks but also work on distinct
problems. Their involvement is shown in parenthesis against each task in the box below. The postdoctoral
fellow is expected to work concurrently on multiple tasks. It is possible that publications, especially from
Challenge C, will take longer than envisaged and pursued after the grant period.

SCHEDULE AND DELIVERABLES

Y1 Mo 1-3 Develop or adapt tools for data generation and validation. (P, G1, G2)
Mo 4-6 Prepare Challenge A data set, release playground data for practice. (P, G1, G2)
Mo 7-9 Test integrity of set A and release Challenge A. (G1, G2)
Mo 7-12 Develop evaluation criteria and verification tools. (P)
Mo 10-12 Prepare Challenge B data set, release playground data. (P, G1, G2)

Y2 Mo 13-15 Test integrity of set B and release Challenge B. (P, G1, G2)
Mo 16-18 Evaluate Challenge A submissions. (P)
Mo 16-21 Prepare Challenge C data set test its integrity and release. (P, G1, G2)
Mo 18-24 Write up Challenge A publications. (P, G1, G2)

Y3 Mo 25-27 Evaluate Challenge B submissions. (P)
Mo 25-30 Write up Challenge B publications. (P, G1, G2)
Mo 31-33 Evaluate Challenge C submissions. (P)
Mo 31-36 Write up Challenge C publications. (P, G1, G2)

10



Risks and Mitigation Risks are inevitable in a collaborative project that depends on many factors. Here
we provide main risks involved and our plan to mitigate them.

• Risk: Large number of tasks could derail some of the projects. Mitigation: At the beginning of the
project develop a tangible schedule. Meet project personnel regularly to review progress.

• Risk: Implementation and testing gets delayed. Mitigation: Identify the most critical aspects of the
project and prioritize their implementation. Retain projects that are close to completion and drop others;
even if two of the three proposed challenges get completed that would be worthwhile.

• Risk: The proposed data challenges require inputs from multiple people. Mitigation: Provide plenty
of advance notice to all participants. Keep enough buffer time to mitigate unexpected delays. Organize
periodic meetings with collaborators to make steady progress.

• Risk: Challenge does not attract participants: Mitigation: Engage with the community from the start;
offer participant support at workshops; encourage publications on challenges by individual groups.

Communicating with the participants The CE project has set up a global consortium of scientists who
are interested in contributing to the R&D that is essential to design subsystems, address analysis challenges
and work on theoretical issues. The monthly consortium calls on theory and data analysis will be the main
vehicle for communicating the mock data challenges. At the start of the project we will layout a detailed
plan of the schedule of mock data releases, challenge periods, evaluation criteria and receive feedback
frequently on the program. Participants will be encouraged to publish their analyses in short-author-list
papers to increase the visibility of the CE project and have a public record of the findings.

Coordination of tasks MIT, Penn State and Syracuse are already collaborating as part of the CE project.
They will have weekly zoom calls to discuss progress on technical tasks, plan data releases and evaluations,
attendance and presentation at conferences and writing of reports and publications. Additionally, a Slack
channel will be set up for easy, fast and secure messaging amongst project members. We also envisage
quarterly in-person visits for collaborative work when the pandemic situation improves.

Measure of success We will evaluate progress each quarter against the work plan. The success of the
project will be measured against (i) timely delivery of data and software products, (ii) broad participation
in the data challenges, (iii) innovation in computing and algorithmic research for 3G and (iv) participation
of underrepresented minorities and early career scientists, all periodically reviewed by the PIs. The NSF
report at the end of the grant will not only include a summary of the research outcomes but outline lessons
learnt and future steps necessary to assure that 3G observatories can reach their full science potential.

4 Expertise Relevant to the Proposal at Collaborating Institutions
Penn State: For over a decade Sathyaprakash has been involved in developing the vision for the next
generation of ground-based detectors [4, 9–12, 54, 167]. His research highlights relevant to the proposal
are the following: He derived the stationary phase approximation to the Fourier transform of binary coa-
lescence waveforms [168] and developed an optimal algorithm to search for compact binaries [168–172]
both central to gravitational-wave discoveries [65, 66]. As the chair of the Working Group on the Science
Case of the Einstein Telescope project he organized two mock data challenges [63, 121]. He took part in
the analysis of mock LISA data [62, 173] and contributed to the NINJA effort [58, 59], that validated the
data analysis pipelines for the space-based LISA observatory and ground-based detectors, respectively. He
contributed to the idea of generating early-warning alerts so that astronomers could potentially observe
binary neutron stars right at the onset of merger [125] and conceived and directed a project on subtracting
compact binary signals in 3G data to reveal cosmological backgrounds [174]. His work on testing general
relativity [175–178] [158, 179–181], measuring cosmological parameters [15] and inferring neutron star
equation of state [182], will be pivotal in setting up the proposed data challenges.
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MIT: Vitale is one of the six original developers of LALInference [120], a suite of compact binary
source characterization algorithms. LALInference has been the parameter estimation software of refer-
ence within the LIGO-Virgo collaboration during the first three observing runs. He has worked on mul-
tiple topics related to the characterization of compact binary coalescences and their use in astrophysics
including the measurement of black hole parameters [183–190] and their use to probe formation chan-
nels of compact binaries [28, 191, 192]; characterization of binary neutron stars [193–195], including
their sky localization and electromagnetic counterparts [196–199]; the impact of Bayesian priors in the
interpretation of LIGO and Virgo’s discoveries [200, 201]; cosmological measurements [138, 202]; ax-
ion searches with gravitational waves [203, 204]; and studies of tidal effects in neutron stars [145, 205].
He has also worked on tests of GR, introducing one of the methods currently used by the collabora-
tion in its publications [187, 206–209]. He has also worked on the astrophysical potential of 3G detec-
tors [5, 17, 188, 210][16, 18, 211, 212] and on networks 3G and A+ detectors [213], and also worked on
topics at the interface between data analysis and instrument development [214–221].
Syracuse University: Brown was the primary author of one of the algorithms used to detect gravitational
waves from binary mergers [222], played a leading role in the development of the PyCBC toolkit for
searches [223,224] and parameter estimation [225]. He participated in many of the early LIGO Mock Data
Challenges [226] and has experience in gravitational-wave detector calibration [78,227,228] and validation
using the injection of simulated signals [225, 229]. He was a lead organizer of the NINJA projects [59,
230, 231], Syracuse hosting the projects’ data sets. Brown served on the executive committee of the
Numerical Relativity–Analytical Relativity (NRAR) project232 and participated in the early MLDCs [233,
234]. Brown has expertise in large-scale scientific workflows and cyberinfrastructure for gravitational-
wave analysis [235–239] and in the reproducibility and replicability of computational analyses [240,241].
He contributed to the adoption of CVMFS by LIGO [116] and the Gravitational-Wave Open Science
Center. Since January 2018, the Brown group has been pursuing research in multimessenger astronomy
and nuclear astrophysics using public data from the LIGO and Virgo observatories [26, 38, 39, 242–247]
and the development of the CE Horizon Study [54].
Roles of External Collaborators and their principal interests in the data challenge tasks and analysis
is shown in the Table below. Some of the collaborators will directly help with the production of chal-
lenge data sets and waveform models. A number of them are interested in the analysis of mock data and
understanding how well we can answer the science promise of the next generation of gravitational-wave
detectors.

Task Collaborators
Noise modelling/data sets Cahillane, Cuoco, Evans, Hild, Regimbau, Stahl, Veitch, Weinstein
Waveform models Ajith, Buonanno, Chatziioannou, Heng, Pfeiffer,
GW search pipelines Cannon, Creighton, Harry, Heng, Littenberg, Marka, Nerella, Nitz, Woan
Parameter estimation Chatziioannou, Berry, Gupta, Singer, Smith, Woan, Zaldarriaga
Dense matter, dark matter Berti, Chatziioannou, Creighton, Gupta, Lasky, Read
Cosmology Berry, Gair, Farr, Hendry, Messenger, Regimbau, Zaldarriaga
Tests of GR Ajith, Berti, Buonanno, Nitz, Pfeiffer, Van Den Broeck, Veitch
Astrophysical models Ajith, Bailes, Fairhurst, Farr, Harry, Mandel, Marka, Nerella, Woan

5 Results from Prior NSF Support
The NSF award relevant to the current proposal for all the PIs is Collaborative Research: The Next Gener-
ation of Gravitational Wave Detectors, August 15, 2018–July 31, 2021 awarded as Brown PHY-1836702
($240,006), Sathyaprakash PHY-1836779 ($253,940), and Vitale PHY-1836814, ($1,154,304). The main
deliverable of this award is the Horizon Study Document [6]. The study includes the science goals for
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CE and the results of a trade study to understand, with quantitative metrics, the cost-to-benefit ratio of
hundreds of different 3G networks, largely based on the Fisher Information Matrix formalism [248, 249].
A logical next step is to validate the study with mock data challenges of this proposal.

Intellectual Merit PI Sathyaprakash, postdoctoral fellow Anuradha Gupta and graduate student Ssohrab
Borhanian worked on defining the science case and the vision for a global detector network. They stud-
ied some of the science opportunities presented by 3G observatories and how detector configurations can
impact the ability to realize those opportunities. Borhanian developed a python package to benchmark hun-
dreds of different detector networks, using it for a cost-benefit analysis of candidate 3G networks [248]
and has made the package public [249]. The group helped define quantitative metrics for a network’s
discovery potential, in addition to studying several specific science questions that could be addressed with
CE [75, 158, 179, 250–253] and analysis issues that would need to be tackled [125, 174].

Broader Impacts Gupta mentored by Sathyaprakash is now a faculty member at the University of Mis-
sissippi. Borhanian defended his PhD in the summer of 2021 and now a postdoctoral fellow at Jena,
Germany. Sathyaprakash organized the Physics and Astronomy at the eXtreme (PAX) workshop in 2018,
2019, and 2021, and a week-long inaugural Cosmic Explorer Conference in 2020. He presented the sci-
ence potential of CE at 12 international conferences and workshops and spoke at three public events. He
is a member of the 3G Sub-Committee57 and a co-chair of its Science Case Team. He contributed to five
Astro2020 Decadal Survey White Papers on the science capability of 3G observatories [9–12, 54]. He is a
convener of the Snowmass21’s254 topical group on Cosmic Probes of Fundamental Physics.255

Intellectual Merit: PI Vitale and graduate student Ken Ng have worked on various topics related to
the scientific potential of CE (more broadly, 3G gravitational-wave detectors). Ng and Vitale collaborated
with Borhanian in ensuring that GWBENCH used to benchmark 3G networks is reliable, by cross checking
its results against more expensive Markov Chain Monte Carlo simulations. They have shown how 3G
detectors can measure the merger rate of black holes across cosmic history [17] [16, 18], and the time-
delay distribution of neutron star binaries [212]. Ng and Vitale have also shown how 3G detectors have
the potential to yield significant constraints on the existence of ultralight bosons, when used jointly with
the space-based LISA observatory [211].

Broader Impacts: Vitale supervises a group of 3 students and 3 postdocs (2 of which are NASA Ein-
stein/Hubble fellows), with a gender ratio of 50%. Ken Ng is the only student partially supported by this
grant. By the time he graduates, a significant part of his work will be about astrophysics with 3G detectors.
Ng and Vitale have given several talks partially or entirely about the scientific potential of next-generation
detectors, including an invited talk at the April 2018 APS meeting. Vitale has been involved with the
writing of several white papers related to 3G detectors [8, 11, 54, 256], for the Astro2020 Decadal.

Intellectual Merit: PI Brown worked on the detection and measurement of core collapse supernovae
with CE. With Adam Burrows, Brown determined how to optimize 3G detectors to maximize the range
to detect core-collapse supernovae [94]. Brown’s student Chaitanya Afle has used supernovae simulations
that explore a variety of progenitor core rotation rates and nuclear equations of state257 to examine the
ability of current and future observatories to determine these properties using gravitational-wave parameter
estimation [156]. Brown was one of the lead writers for the CE Astro2020 Decadal Survey submission.54

Broader Impacts: Brown’s five most recent Ph.D. students are from underrepresented backgrounds and
include three women of color and two Hispanic men. Two of these students currently hold prize postdoc-
toral fellowships (Los Alamos National Laboratory Directors Fellowship and Stephen Hawking Fellow-
ship), two hold data science positions in industry (iRobot and Johns Hopkins Applied Physics Laboratory),
and one is a postdoc with the N3AS NSF Physics Frontier Center. Brown was the lead organizer for the
2019 Kavli Institute for Theoretical Physics Program “The New Era of Gravitational-Wave Physics and
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Astrophysics” that brought together a diverse group of scientists to study multimessenger observations of
merging binaries. Brown manages the computing infrastructure for the CE Consortium.

6 Broader Impacts
Gravitational-wave astronomy is triggering new research in black holes, astrophysics and cosmology, areas
that are popular amongst school teachers, students, and the general public. We will enhance the broader
impact of this emerging area by: (i) establishing a cloud-based access to high performance computing
resources for K-12 teachers and students, (ii) facilitating education and research in undergraduates, schools
students, particularly underrepresented minorities and (iii) continuing to host the PAX series of workshops.

HPC access to K-12 School Students and Teachers For precollege education, current frameworks
in K-12 STEM,258 computer science (CS)259 and math260 education promote engaging students in the
disciplinary practices of professionals in order to learn important concepts. Recent reporting suggests that
students’ access to high-quality CS and STEM education varies significantly, and that, too often, students
of color, low socioeconomic status students, and girls have less access to opportunities than those available
for their wealthier, white, and male peers.261

While the number of Pennsylvania high schools offering CS classes has remained consistent, the most
commonly reported challenges include a lack of qualified teachers.262 Secondary teachers with little expe-
rience in research find the shift to incorporating CS into STEM instruction to be challenging, but teacher
education and professional development programs can respond to this need. Access to adequate com-
puting resources and effective professional learning programs will enable teachers to deepen their content
and pedagogical knowledge as well as opportunities to practice new instructional approaches in their class-
rooms, which can lead to improved student achievement.263, 264 Three primary objectives for programmatic
success will guide our activities and evaluation:

HPC ACCESS TO STUDENTS AND TEACHERS

1. Expand infrastructure for broader impacts by establishing web-based access to high-
performance computing resources to secondary-level teachers and students.

2. Enhance teachers’ understanding of the practices of STEM (+C) research, particularly in the
areas of astronomy and physics through a summer workshop.

3. Improve teachers’ ability to use the practices of researchers to teach content, aligned with
current STEM standards by involving them in simple data challenges.

In collaboration with Penn State’s Institute for Computational and Data Sciences (ICDS) and the Cen-
ter for Science and the Schools (CSATS) (partly funded by NSF grant PHY-2012083), Sathyaprakash has
initiated the establishment of cloud-based access to high-performance computing (HPC) resources for K-
12 teachers and students and we will contribute to that effort by including simple data challenges (e.g.,
matched filtering) in that program. Since many Pennsylvania school districts have outdated computer re-
sources or have purchased less expensive devices, students are often limited to class-room projects that
require limited to no computing power. This is counter to the nation’s needs of a prepared future work-
force in STEM fields. In collaboration with CSATS we will conduct summer workshops to train teachers
in the use of HPC and the data challenges. Teachers who express interest in implementing the workshop
activities in their classrooms will be supported by the PIs, postdoc and CSATS faculty.

ICDS will provide access to 100 cores and 5 TB of storage to K-12 students and teachers to accomplish
the goals stated in the box above. The resources will also include dual port 40/100GB Ethernet connec-
tivity, authentication for login to ensure security, secure login via a web based interface for accessibility,
access to software licenses and software stack, support for administration of equipment and software.
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Undergraduate education and outreach As the scientific part of the proposed work aims at helping the
scientific community be ready for the prospects and challenges of the next generation of GW detectors,
PIs will work with undergraduate students to prepare the next generation of scientists. While some stu-
dents will be recruited, e.g., via the MIT UROP program,265 which encourages undergraduates to become
involved with research as early as possible, we will actively work to specifically recruit students from un-
derrepresented minorities, low socioeconomic and first generation backgrounds. Vitale will recruit through
the MIT Summer Research Program266 (MSRP) whose mission is to increase the number of URM students
in STEM. MSRP students are selected from colleges across the USA, and spend one summer doing ac-
tive research at MIT. Vitale will also reach out to various MIT student associations (e.g. MIT’s African
Students’ Associations and MIT Association of Puerto Rican Students) to encourage students from those
groups to get involved with undergraduate research in his group.

Data analysis methods, and tools such as machine learning, are assuming a more prominent role in
the skill set of a successful scientist and pave the way to multiple, well-sought after jobs. The proposed
work naturally presents many opportunities to learn and apply these methods. All students will be invited
to join weekly group meetings of the collaboration where they will interact with the broader group and
present updates on their work. Reaching out to the general public will be a key part of the proposed work.
Once a year for the duration of the proposal, Vitale will hold an online or in-person lecture for the general
public, targeting youth and families and advertised through MIT’s outreach page267 as well as through the
network of high school teachers that Vitale has built in the context of his CAREER award.

Including students from underrepresented backgrounds Central to this proposal is the training of
graduate students. Co-PI Brown has actively worked to recruit and mentor women and students of color
in his research group. Brown is a co-PI of the NSF PAARE award “Catching a New Wave: the CSUF-
Syracuse Partnership for Inclusion of Underrepresented Groups in Gravitational-wave Astronomy.” This
partnership between Syracuse University and California State University Fullerton (CSUF) aims to signif-
icantly increase the number of students from underrepresented groups, in particular Hispanic and Latino/a
students.The PAARE is in its sixth year and has provided funding that supported four Hispanic men and
one Black woman to earn their Ph.D. in physics from Syracuse University. After fellowships in their early
years, PAARE students are hired as research assistants supported by other NSF awards. This proposal
will provide support and training for underrepresented students who wish to engage in 3G research, and
broaden opportunities for students to include MIT and Penn State.

Challenge Workshops and Training The success of this project relies largely on the participation of
external collaborators. We will host yearly, 4-day workshops with the dual goal of offering training to
and receiving feedback from challenge participants. They will consist of lectures and tutorials on data
cleaning, search pipelines, Bayesian inference, machine learning, etc. Lectures will be delivered by project
personnel and collaborators working at the forefront of data analysis. The project will partially support
the attendance of about 20 participants, especially early career scientists and underrepresented minorities.
Additionally, the annual PAX meetings will be a forum to debate the results of data challenges with a
broader audience. Participants will be offered mentoring throughout the challenge period. A ticketing
system will be used to address problems and answer questions.

Evaluation of Broader Impacts Evaluation of the proposed program will provide an in-depth view of
the impact of the educational programming for K-12 students and teachers. The Guskey model will be
used to evaluate professional development (PD) of teachers at multiple levels and to gauge the success of
this program.268 Using this model, we examine teachers’ reactions to the PD, learning from the PD, and
translation of that learning into their professional practice. Public lectures will be evaluated by asking the
attendees to fill out an online questionnaire whose results will be used to improve the next iteration.
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Brown, Bernd Brügmann, Luisa T Buchman, Alessandra Buonanno, Laura Cadonati, Jordan
Camp, Manuela Campanelli, Joan Centrella, Shourov Chatterji, Nelson Christensen, Tony Chu,
Peter Diener, Nils Dorband, Zachariah B Etienne, Joshua Faber, Stephen Fairhurst, Benjamin Farr,
Sebastian Fischetti, Gianluca Guidi, Lisa M Goggin, Mark Hannam, Frank Herrmann, Ian Hinder,
Sascha Husa, Vicky Kalogera, Drew Keppel, Lawrence E. Kidder, Bernard J Kelly, Badri

6

https://doi.org/10.1103/PhysRevLett.123.011102
https://arxiv.org/abs/1811.00364
https://doi.org/10.1007/s41114-020-00026-9
https://arxiv.org/abs/1304.0670
https://dcc.ligo.org/LIGO-T1800042/public
https://arxiv.org/abs/1907.04833
https://www.esfri.eu/latest-esfri-news/new-ris-roadmap-2021
https://www.nap.edu/read/26141/chapter/1
https://gwic.ligo.org/3Gsubcomm/documents.shtml
https://doi.org/10.1088/0264-9381/26/11/114008
https://arxiv.org/abs/0905.4227


Krishnan, Pablo Laguna, Carlos O Lousto, Ilya Mandel, Pedro Marronetti, Richard Matzner,
Sean T McWilliams, Keith D Matthews, R Adam Mercer, Satyanarayan R P Mohapatra, Abdul H
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N. Sanchis-Gual, B. Sassolas, B. F. Schutz, D. Sentenac, V. Sequino, M. Sieniawska, N. Singh,
A. Singhal, F. Sorrentino, C. Stachie, D. A. Steer, G. Stratta, B. L. Swinkels, M. Tacca,
N. Tamanini, S. Tiwari, M. Tonelli, A. Torres-Forné, F. Travasso, M. C. Tringali, A. Trovato,
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Wolfgang Tichy, Barry Wardell, Anıl Zenginoğlu, Daniela Alic, Sebastiano Bernuzzi, Tanja Bode,
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