

Е C R А

CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS

The Gravitational-Wave Messenger

Sylvia Biscoveanu

APS April 2024

sbisco@northwestern.edu

NASA Hubble

Outline

- Current detectors
	- What we've learned
	- What we cannot learn
- Cosmic Explorer
	- Design concept
	- Science case
	- Timeline
- Multimessenger synergies

CE Horizon Study
Evans + (inc SB) 2109.09882

CE MPSAC ngGW White Paper Evans + (inc SB) 2109.09882

CE Trade Study
Gupta+ (inc SB) 2307.10421

Outline

- Current detectors
	- What we've learned
	- What we cannot learn
- Cosmic Explorer
	- Design concept
	- Science case
	- **Timeline**
- Multimessenger synergies

More Cosmic Explorer at April APS

This afternoon in D10.00002 - *Beyond O4: What lies ahead for Terrestrial Gravitational-Wave Detectors*, Stefan Ballmer

Saturday afternoon in S10.00002 - *Cosmic Explorer: Pushing the gravitational-wave frontier across astronomy, physics, and cosmology,* Alessandra Corsi

Our observational landscape

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

- **1. Compact object binaries** that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range ${\sim}1-100$ M_{\odot}
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma -ray bursts and an astrophysical site of heavy -element nucleosynthesis
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have **masses** spanning the range \sim 1 – 100 M_{\odot}
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and an astrophysical site of heavy-element nucleosynthesis
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range \sim 1 – 100 M_{\odot}
- 3. The **spins** (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and an astrophysical site of heavy-element nucleosynthesis
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range ${\sim}1-100$ M_{\odot}
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- **4. Binary neutron star mergers** are the progenitors of some **short gamma -ray bursts** and a n astrophysical site of **heavy -element nucleosynthesis**
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range ${\sim}1-100$ M_{\odot}
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma -ray bursts and an astrophysical site of heavy -element nucleosynthesis
- 5. The fraction of the **total energy density** of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

What we can't learn… *yet*

- Binary neutron star mergers beyond cosmic noon
- Precision measurements of the neutron star equation of state
- Binary neutron star postmerger signa l
- Binary mergers including Population III and primordial black holes
- Gravitational -wave memory effect
- Cosmological stochastic gravitational wave background s

The next generation

US-based concept planned for the late 2030s

European concept with triangular design

Cosmic Explorer

Reference design includes two facilities widely separated in the US 40km + 20km (tunable)

Order of magnitude improvement in strain sensitivity over current detectors

Equivalent to an order of magnitude increase in the diameter of a telescope

Design concept

- Dual-recycled Fabry-Perot Michelson Interferometer
- Order of magnitude longer arms
- Quantum sensing
- Improved low-frequency isolation

Key science objectives

Black holes and neutron stars through cosmic time

- Evolution of the merger rate as a function of redshift
- Remnants of the first stars
- Seeds of supermassive black holes, hierarchical growth
- Smoking-gun distinction of primordial black holes

Black holes and neutron stars through cosmic time

- Evolution of the merger rate as a function of redshift
- Remnants of the first stars
- Seeds of supermassive black holes, hierarchical growth
- Smoking-gun distinction of primordial black holes

Dynamics of Dense Matter

- 10m NS radius errors on the population level
- Detection of BNS postmerger signal yearly
- Detection of continuous GWs from known accreting NSs and millisecond pulsars
- Detection of one supernova from within the Milky Way or its satellites over a 50-year lifetime

 $2.5 -$ J0740+6620 2.0 **NICER** N $\frac{1}{2}$ $\frac{1}{2$ GW170817 $1.0 -$ Skyrme **BOB ··· NLWM** ------ DDM ..-..BOB(N+Y) 0.5 DBHF ------ SFHo(N+Y) **FSS2CC FSS2GC AFDMC** 0.0 10 12 13 15 R [km]

Burgio+ PrPNP 120, 103879 (2021)

Dynamics of Dense Matter

- 10m NS radius errors on the population level
- Detection of BNS postmerger signal yearly
- Detection of continuous GWs from known accreting NSs and millisecond pulsars
- Detection of one supernova from within the Milky Way or its satellites over a 50-year lifetime

20km CE is critical!

Multimessenger Astrophysics

- At least one 40km CE \rightarrow 100x higher BNS detection rate
- BNS redshift reach of $z \approx 2$
	- Map the progenitors of short gamma-ray bursts
	- Measure time delays
- With at least 2 XG detectors:
	- Tens of signals localized to < 1 $deg²$
	- Thousands to $<$ 10 deg²
	- Few tens < 10 deg² 5 mins before merger

Extreme Gravity and Fundamental Physics

- Tests of General Relativity
	- Parameterized deviations
	- Ringdown tests of no-hair theorem
	- Memory effect
	- Beyond-GR polarizations
	- Graviton mass
- Cosmology
	- Expansion rate of the universe using standard sirens
	- Constraints on ΛCDM and dark energy EoS using NS EoS

Beyond the Standard Model

- Exotic compact objects
	- Black hole mimickers
	- Boson clouds around black holes
	- Neutron stars with dark matter interiors
- Primordial stochastic gravitational- wave backgrounds
	- Cosmic strings
	- First-order phase transitions
	- Explosive particle production via preheating

Cosmic Explorer timeline

NSF MPS ngGW subcommittee report emphasized the extraordinary discovery potential of a Cosmic Explorer 40km detector while at the same time carrying the lowest technical risk See session S10.00002 on Saturday afternoon

Multimessenger synergies

Conclusion

- Deeper, wider, sharper
	- Black holes and neutron stars through cosmic time
	- Dynamics of Dense Matter and Multimessenger Astrophysics
	- Extreme Gravity and Fundamental Physics
	- Discovery potential

Image: Evan Hall (MIT), Nils Fischer, Harald Pfeiffer, Alessandra Buonanno (Max Planck Institute for Gravitational Physics), SXS Collaboration

Backup

Next-generation data analysis

Bias in inferred binary parameters from overlapping signals?

Scalability of population inference techniques to thousands of events?

Separation of astrophysical foreground and cosmological background?

frame Mass Source-

32

Boson cloud reach

