

CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS

The Gravitational-Wave Messenger

Sylvia Biscoveanu APS April 2024

@sylvia_bisco

sbisco@northwestern.edu

NASA Hubble Fellowship Program

Outline

- Current detectors
 - What we've learned
 - What we cannot learn
- Cosmic Explorer
 - Design concept
 - Science case
 - Timeline
- Multimessenger synergies

CE Horizon Study Evans + (inc SB) 2109.09882

CE MPSAC ngGW White Paper Evans + (inc SB) 2109.09882

CE Trade Study Gupta+ (inc SB) 2307.10421

Outline

- Current detectors
 - What we've learned
 - What we cannot learn
- Cosmic Explorer
 - Design concept
 - Science case
 - Timeline
- Multimessenger synergies

More Cosmic Explorer at April APS

This afternoon in D10.00002 - Beyond O4: What lies ahead for Terrestrial Gravitational-Wave Detectors, Stefan Ballmer

Saturday afternoon in S10.00002 - Cosmic Explorer: Pushing the gravitational-wave frontier across astronomy, physics, and cosmology, Alessandra Corsi

Our observational landscape

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

- **1. Compact object binaries** that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range $\sim 1 100 M_{\odot}$
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and an astrophysical site of heavy-element nucleosynthesis
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{GW} \leq 5.8 \times 10^{-9}$

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range $\sim 1 100 M_{\odot}$
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and an astrophysical site of heavy-element nucleosynthesis
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{GW} \leq 5.8 \times 10^{-9}$

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range $\sim 1 100 M_{\odot}$
- 3. The **spins** (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and an astrophysical site of heavy-element nucleosynthesis
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range $\sim 1-100~M_{\odot}$
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and an astrophysical site of heavy-element nucleosynthesis
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range $\sim 1 100 M_{\odot}$
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and an astrophysical site of heavy-element nucleosynthesis
- 5. The fraction of the **total energy density** of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

What we can't learn... yet

- Binary neutron star mergers beyond cosmic noon
- Precision measurements of the neutron star equation of state
- Binary neutron star postmerger signal
- Binary mergers including Population III and primordial black holes
- Gravitational-wave memory effect
- Cosmological stochastic gravitationalwave backgrounds

The next generation

US-based concept planned for the late 2030s

European concept with triangular design

Cosmic Explorer

Reference design includes two facilities widely separated in the US 40km + 20km (tunable)

Order of magnitude improvement in strain sensitivity over current detectors

Equivalent to an order of magnitude increase in the diameter of a telescope

Design concept

- Dual-recycled Fabry-Perot Michelson Interferometer
- Order of magnitude longer arms
- Quantum sensing
- Improved low-frequency isolation

Design parameter	A +	A [♯]	CE
Arm length	4 km	4 km	20 km, 40 km
Arm power	750 kW	1.5 MW	1.5 MW
Squeezing level	6 dB	10 dB	10 dB
Test mass mass	40 kg	100 kg	320 kg
Test mass coatings	A+	A+/2	A+
Suspension length	1.6 m	1.6 m	4 m
Newtonian mitigation	0 dB	6 dB	20 dB

Key science objectives

Black holes and neutron stars through cosmic time

- Evolution of the merger rate as a function of redshift
- Remnants of the first stars
- Seeds of supermassive black holes, hierarchical growth
- Smoking-gun distinction of primordial black holes

Black holes and neutron stars through cosmic time

- Evolution of the merger rate as a function of redshift
- Remnants of the first stars
- Seeds of supermassive black holes, hierarchical growth
- Smoking-gun distinction of primordial black holes

Dynamics of Dense Matter

- 10m NS radius errors on the population level
- Detection of BNS postmerger signal yearly
- Detection of continuous GWs from known accreting NSs and millisecond pulsars
- Detection of one supernova from within the Milky Way or its satellites over a 50-year lifetime

Dynamics of Dense Matter

- 10m NS radius errors on the population level
- Detection of BNS postmerger signal yearly
- Detection of continuous GWs from known accreting NSs and millisecond pulsars
- Detection of one supernova from within the Milky Way or its satellites over a 50-year lifetime

20km CE is critical!

Multimessenger Astrophysics

- At least one 40km CE → 100x higher BNS detection rate
- BNS redshift reach of $z \approx 2$
 - Map the progenitors of short gamma-ray bursts
 - Measure time delays
- With at least 2 XG detectors:
 - Tens of signals localized to < 1 deg²
 - Thousands to < 10 deg²
 - Few tens < 10 deg² 5 mins before merger

Extreme Gravity and Fundamental Physics

- Tests of General Relativity
 - Parameterized deviations
 - Ringdown tests of no-hair theorem
 - Memory effect
 - Beyond-GR polarizations
 - Graviton mass
- Cosmology
 - Expansion rate of the universe using standard sirens
 - Constraints on ΛCDM and dark energy EoS using NS EoS

Beyond the Standard Model

- Exotic compact objects
 - Black hole mimickers
 - Boson clouds around black holes
 - Neutron stars with dark matter interiors
- Primordial stochastic gravitationalwave backgrounds
 - Cosmic strings
 - First-order phase transitions
 - Explosive particle production via preheating

Cosmic Explorer timeline

NSF MPS ngGW subcommittee report emphasized the extraordinary discovery potential of a Cosmic Explorer 40km detector while at the same time carrying the lowest technical risk See session S10.00002 on Saturday afternoon

Multimessenger synergies

Conclusion

- Deeper, wider, sharper
 - Black holes and neutron stars through cosmic time
 - Dynamics of Dense Matter and Multimessenger Astrophysics
 - Extreme Gravity and Fundamental Physics
 - Discovery potential

Image: Evan Hall (MIT), Nils Fischer, Harald Pfeiffer, Alessandra Buonanno (Max Planck Institute for Gravitational Physics), SXS Collaboration

Backup

Next-generation data analysis

Bias in inferred binary parameters from overlapping signals? Scalability of population inference techniques to thousands of events? Separation of astrophysical foreground and cosmological background?

/m.

Boson cloud reach

