Multi-messenger standard siren cosmology and high-redshift black hole formation history with next generation gravitational-wave observatories

> <u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) <u>Chen</u>, Ricarte & Pacucci, 2202.04764

> > Hsin-Yu Chen

(NASA Einstein Fellow, MIT)

Cosmic Explorer Science Call, March 2022

Bright siren in 3G era

Bright siren in 3G era

The limiting factor is the electromagnetic counterpart observations.

GW observatories

Schutz, Nature (1986) / Holz & Hughes, ApJ (2005)

GW observatories

Schutz, Nature (1986) / Holz & Hughes, ApJ (2005)

GW observatories

Schutz, Nature (1986) / Holz & Hughes, ApJ (2005)

GW observatories

Hsin-Yu Chen / MIT

Schutz, Nature (1986) / Holz & Hughes, ApJ (2005)

 $H(z) = H_0 \sqrt{\Omega_M (1+z)^3 + \Omega_k (1+z)^2 + \Omega_\Lambda (1+z)^{3(1+w)}}$

Schutz, Nature (1986) / Holz & Hughes, ApJ (2005)

Hsin-Yu Chen / MIT

Schutz, Nature (1986) / Holz & Hughes, ApJ (2005)

<u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021)

Electromagnetic observations in 2.5-3G era

-There are more GW events than the telescopes can follow.

-The detection efficiency drops rapidly as the distance increases.

<u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021)

Electromagnetic observations in 2.5-3G era

Hsin-Yu Chen / MI1

<u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) 6 <u>Cosmological constraints from bright sirens in 2.5-3G</u>

-A+ and Voyager still at percent level. Subpercent level precision is possible in CE era.

-Kilonovae are better than GRBs for H₀ constraint.

<u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) 7 <u>Cosmological constraints from bright sirens in 2.5-3G</u>

-GRBs are better than kilonovae to constrain Ω_m and w.

-GRBs (with beaming) only need an order of magnitude fewer events to achieve the same precision than kilonovae.

<u>Chen</u>, Cowperthwaite, Metzger, Berger, 2011.01211, ApJL (2021) 8 <u>Cosmological constraints from bright sirens in 2.5-3G</u>

-Swift-like GRB telescope with larger field-of-view and better sensitivity is in need in the CE era.

-Otherwise, dedicated VRO-like telescope is needed in absence of the GRB telescope described above.

How did massive black holes at the center of galaxies formed?

How did massive black holes at the center of galaxies formed?

Mergers of black holes

Accretion

Seeding by binary black hole mergers

-Light seed [O(10-10³) M_{\odot}]: Remnants of Pop III stars -Heavy seed [O(10⁴-10⁶) M_{\odot}]: Direct collapse of dense and massive cloud

Seeding by binary black hole mergers

-Light seed [O(10-10³) M_{\odot}]: Remnants of Pop III stars -Heavy seed [O(10⁴-10⁶) M_{\odot}]: Direct collapse of dense and massive cloud

The abundance of seeds and their merging mechanism is highly uncertain.

Dominated uncertainties for the seeding models¹¹

-The relative ratio of light v.s heavy seeds that contribute to the central black hole formation **Light/heavy seed mixture ratio R**

Dominated uncertainties for the seeding models '

-The relative ratio of light v.s heavy seeds that contribute to the central black hole formation **Light/heavy seed mixture ratio R**

Dominated uncertainties for the seeding models¹²

-The relative ratio of light v.s heavy seeds that contribute to the central black hole formation
⇒ Light/heavy seed mixture ratio R
-How likely the central black holes merge after their galaxies merge?
⇒ Merging probability P

Dominated uncertainties for the seeding models

-The relative ratio of light v.s heavy seeds that contribute to the central black hole formation
⇒ Light/heavy seed mixture ratio R
-How likely the central black holes merge after their galaxies merge?

⇒ Merging probability P

13

To constrain R and P from observations

<u>Chen</u>, Ricarte & Pacucci, 2202.04764

13

To constrain R and P from observations

constraining power to R and P due to the degeneracy.

14

To constrain R and P from observations

constraining power to R and P due to the degeneracy.

Mass-redshift distribution of mergers

Perfect detector

15

Chen, Ricarte & Pacucci, 2202 04764

16

Mass-redshift distribution of mergers

Chen Ricarte & Pacucci, 2202.04764Limited scenario 1:Heavy-seed-dominated, high merging probability v.s.Light-seed-dominated, low merging probability

Chen Ricarte & Pacucci, 2202.04764Limited scenario 1:Heavy-seed-dominated, high merging probability v.s.Light-seed-dominated, low merging probability

Limited scenario 2:

Heavy-seed-dominated, different merging probabilities

Chen, Ricarte & Pacyeci, 2202.04764

18

Limited scenario 2:

<u>Chen</u>, Ricarte & Pacueci, 2202.04764 18

Heavy-seed-dominated, different merging probabilities

Hsin-Yu Chen / MIT

19

-Even if the uncertainties of parameter estimations are ignored, there are still scenarios CE/ET can't properly constrain.

-Even if the uncertainties of parameter estimations are ignored, there are still scenarios CE/ET can't properly constrain.

-We need better ways to distinguish between nuclear and off-nuclear black hole mergers, e.g. spin?

-Even if the uncertainties of parameter estimations are ignored, there are still scenarios CE/ET can't properly constrain.

-We need better ways to distinguish between nuclear and off-nuclear black hole mergers, e.g. spin?

-If the parameter estimation uncertainties are considered, we may need multi-band multimessenger (LISA+3G+EM) observations to study the black hole seeding problems. Hsin-Yu Chen / MIT

Different EM observing scenarios

Scenario	GW	$R_{ m GW}^{(a)}$	EM	$t_{\rm int}^{(b)}$	$D_{L, \mathrm{lim}}^{(c)}$	$f_{20 deg^2}^{(d)}$	$f_{\rm obs}^{(e)}$	$\iota_{\text{GRB}}^{(f)}$	$\sigma^{(g)}_{\iota}$	$\dot{N}^{(h)}_{ m GW/EM}$	$\mathcal{F}_{\mathrm{obs}}^{(i)}$
-	-	(Mpc)	-	-	(Mpc)	-	-	-	-	(yr ⁻¹)	-
A+, KN (Baseline)	A+	410	Rubin	30 s ×24 +120s	575	0.8	0.4	All	N/A	12	0.0008
Voyager, KN (Baseline)	Voyager	1020	-	$30 \text{ s} \times 24 + 120 \text{s}$	575	0.8	-	-	-	28	0.002
Voyager, KN (Intermediate)	-	-	-	300 s ×24	1250	0.7	-	-	-	114	0.06
Voyager, KN (Ambitious)	-	-	-	1800 s ×24	2250	0.6	-	-	-	144	0.48
CE, KN (Baseline)	CE	12840	-	30 s ×24 +120s	575	1.	-	-	-	39	0.003
CE, KN (Intermediate)	-	-	-	300 s ×24	1250	0.95	-	-	-	321	0.18
CE, KN (Optimal)	-	-	-	600 s ×24	1550	0.95	-	-	-	572	0.6
CE, KN (Ambitious)	-	-	Rubin(+)	1800 s ×24	2250	0.9	-	-	-	300(1425)	1(4.75)
A+, GRB (Baseline)	A+	410	Swift	$<\!2\mathrm{hr}$	3000	N/A	0.03	$\lesssim 10^{\circ}$	10°	0.07	$\ll 1$
A+, GRB (Intermediate)	-	-	Swift+	-	-	-	0.15	-	-	0.35	≪1
Voyager, GRB (Baseline)	Voyager	1020	Swift	-	-	-	0.03	-	-	1	$\ll 1$
Voyager, GRB (Intermediate)	-	-	Swift+	-	-	-	0.15	-	-	5	$\ll 1$
CE, GRB (Baseline)	CE	12840	Swift	-	-	-	0.03	-	-	3	$\ll 1$
CE, GRB (Intermediate)	-	-	Swift+	-	-	-	0.15	-	-	16	$\ll 1$
CE, GRB (Ambitious)	-	-	Swift++	-	5600	-	0.15	-	-	91	≪1

Table 1. Joint GW-EM Observing Scenarios