# Premerger localization of compact binary mergers with third-generation observatories

# Alex H. Nitz, Tito Dal Canton





Laboratoire de Physique des 2 Infinis

#### Intro: motivation





Cannon+2012

#### Intro: premerger analysis of GW data



# Assumptions about the detectors

| Abbreviation                | Observatory     | Min frequency | Noise model |
|-----------------------------|-----------------|---------------|-------------|
| Н                           | LIGO Hanford    | 7             | Voyager     |
| L                           | LIGO Livingston | 7             | Voyager     |
| I                           | LIGO India      | 7             | Voyager     |
| V                           | Virgo           | 11            | O5 high     |
| К                           | KAGRA           | 11            | Design      |
| C <sup>U</sup> 1            | CE USA          | 5.2           | CE1         |
| C <sup>A</sup> <sub>1</sub> | CE Australia    | 5.2           | CE1         |
| C <sup>U</sup> <sub>2</sub> | CE USA          | 5.2           | CE2         |
| C <sup>A</sup> <sub>2</sub> | CE Australia    | 5.2           | CE2         |
| E                           | ET              | 2             | ET-D design |
| E <sub>5</sub>              | ET              | 5             | ET-D design |



- Stationary Gaussian noise
- ~10<sup>5</sup> BNS signals all having 1.4  $M_{Sun}$  components\*
- Fiducial merger rate of 300 Gpc<sup>-3</sup> yr<sup>-1</sup> at z=0 (GWTC-2 like)
- Rate evolution as in Madau & Dickinson 2014

\* However, a simple scaling relation is provided in the paper to extend our results to other masses.

# Analysis of the simulated data

- Signal model
  - Post-Newtonian inspiral to 3.5 order (TaylorF2)
  - Non-precessing and quasicircular
  - Quadrupole order only
- Detection criterion
  - Very simple cut on network SNR > 12
  - Conservative
  - Consistent with previous studies (e.g. Nitz+2020, Magee+2021)
- Sky localization of detected signals
  - Full Bayesian inference *not* a Fisher matrix approximation
  - Heterodyning to reduce the sampling of the signal (e.g. Cornish 2010, Finstad & Brown 2020)
  - Earth rotation taken into account
  - Nested sampling via Dynesty package
  - Isotropic priors on sky location and orientation
- Cost: hours to days on a single core for one signal



#### Detection rates with precise sky localizations



7

#### Detection rates without precise sky localizations



#### Detection rates: precise sky localization & nearby



9

#### Wider look at the last several hours before merger



### Conclusion

- Premerger BNS detections with precise localizations minutes before merger can become commonplace in the 3G era.
- Potential for several EM observations at, or shortly before, merger.
- Development needed:
  - ~minute-long spatial localization methods that include Earth rotation (maybe only for ET)
  - Sensitive telescopes for proper joint EM observations
  - Coordination

Paper: Nitz & Dal Canton 2021, https://doi.org/10.3847/2041-8213/ac1a75

Data release: <u>https://github.com/gwastro/gw-3g-merger-forecasting</u>

Thank you!