

Astrophysics with the next generation of ground-based gravitational-wave detectors

Salvatore Vitale MIT

April APS 2018

Where are we?

Salvatore Vitale

- Advanced detectors (second generation, 2G) have detected 6 binary black holes (BBH)
 - Component masses measured at few x 10% level
 - Spins very hard to measure
 - Oriented face-on/off
 - Up to redshift of ~0.2
 - See LVC, PRL **118** 221101, PRX **6** 041015, <u>https://www.ligo.org/detections.php</u>
- And one binary neutron star (BNS), LVC PRL 119, 161101
 - First GW bounds on the equation of state (EOS) of nuclear matter
 - Joint EM-GW detection

Where are we?

• We have estimated the merger rate of BBH and BNS to be in the range $12-213 \text{ Gpc}^{-3} \text{ yr}^{-1}$ $1540^{+3200}_{-1220} \text{ Gpc}^{-3} \text{ yr}^{-1}$

```
LVC, PRL 119 161101
```

- Will advance the exploration of extremes of astrophysics and gravity
- solve open questions in fundamental physics and astronomy
- provide insights into most powerful events in the Universe
- boost the impact of multi-messenger astronomy
- likely to reveal new objects and phenomena

LVC, PRL 118 221101

Where are we?

You are here!

2|GO

Where do we go from here?

- With 2G at design, we'll go up to z ~ 1 for BBH and ~0.1 for BNS
- If we want to detect sources at high redshift, we need something else

- Proposed third—generation (3G) ground based detectors will
 - Be a factor of ~>10 more sensitive that 2G-design
 - Detect BBH from redshifts >10
 - Detect a lot of sources, with very large signal-to-noise ratio (SNR)

A science case for next-generation detectors

- LIGO and Virgo both have facility-imposed limits on sensitivity
 - a compelling case to build detectors that can observe deeper into cosmos
- ➢ to fully exploit the GW window we will require new facilities
- Gravitational Wave International Committee (GWIC) formed a subcommittee to develop a vision for the next generation of ground-based detectors
- one of the charges to the GWIC subcommittee is:
 - "commission a study of ground-based gravitational wave science from the global scientific community, investigating potential science vs. architecture vs. network configuration vs. cost trade-offs, ..."
 - GWIC subcommittee has constituted five 3G subcommittees:
- (1) Science Case Team (3G-SCT), (2) R&D Coordination, (3) Governance, (4) Agency Interfacing, (5) Community Networking
- Science Case will be developed by an international consortium of scientists under the leadership of the 3G-SCT (18 members)

Science Case: Goals, Timeline

- develop a robust science case unique to GW observations for the next generation of ground-based detectors
 - help with position papers for national and international studies and surveys
 - > APPEC and ESFRI roadmaps in Europe, US decadal survey, ...
- Science case document to be delivered by Dec. 2018
 - study supported by eight working groups
 - ~ 150 researchers from around the world have joined the 3G-SCT consortium

Bangalore Sathyaprakash!

Proposed 3G detectors

• Einstein Telescope

1GO

- 10 Km long arms
- Triangular shape
- Underground
- Sensitivity down to few Hz

- Cosmic Explorer
 - 40 Km long arms
 - L shaped
 - Over ground
 - Sensitivity down to ~8Hz

Where do we go from here?

You are here!

LIGO

Where do we go from here?

Loud and clear

• Most events from redshift of a few

BBH with component masses in range [6,100]M

4GO

... and well oriented

- Their inclination angle distribution will be isotropic
 - Better ringdown tests, memory effect, spin precession, distance estimation

Vitale, PRD(R) 94 121501 April 14 2018

CIO

Salvatore Vitale

Why a network?

- For advanced detectors
 - Sky localization, distance estimation
 - Glitch rejection
 - Increase network duty cycle
- For more sensitive detectors
 - All of the abovementioned
 - Mass estimation!! (Through luminosity distance and cosmology)

$$m^s = \frac{m^{det}}{1+z}$$

CO

Locations

	Longitude	Latitude	Orientation	Type
L	-1.58	0.533	2.83	CE
С	1.82	0.67	1.57	CE
Ι	1.34	0.34	0.57	CE
E	0.182	0.76	0.34	ET
Α	2.02	-0.55	0	CE

LIGO

BBH Extrinsic parameters

- Precise distance and sky position:
 - EM (if luminous), isotropy, cosmology

17

BBH Extrinsic parameters

- Precise distance and sky position:
 - EM (if luminous), isotropy, cosmology

BBH Source frame masses

- Especially at large redshifts, having more than 2 sites is important to measure component masses
- Uncertainties of [few-10]% for z<3
- Factor 1.5-2 better with 4 IFOs w.r.t. 2 IFOs

BBH Spins

 Due to larger SNR and isotropic orbital orientation, 3G will get much better spin estimation than 2G

4GO

- Many methods have been proposed to study the formation channels of BBH (and compact binaries in general)
 - Shown to work for 2G local universe (Vitale+, Farr+, Talbot+, Stevenson+,more)
- With 3G:
 - Study how the fraction of CBC from each channels evolve with redshift
 - Accessing thousands of BBH per year we can study the explosion mechanism of SNe (O'Shaughnessy+, PRL 119 011101 shows what can be learned with GW151226 alone)

BNS Localization

- Will detect BNS at large redshifts
- A significant fraction of which can be localized to a few deg2
 - H0, dark energy EOS
 (Sathyaprakash+
 0906.4151; Del Pozzo+
 1506.06590; many more)

Equation of state and postmerger

- Advanced detectors will start measuring the equation of state of neutron stars
 - Most likely from the inspiral phase
 - With a bit of luck, hints of postmerger physics
- 3G detectors will easily measure the EOS from both inspiral and post-inspiral

Adapted from Read+ PRD 88, 044042

Tests of general relativity

- Larger SNR and better low frequency will yield dramatic improvements
- Also, precise ringdown tests, memory effect, propagation tests, more!

Uncertainty w/ detector X Uncertainty w/ aLIGO

- Using the rates calculated with O2 events and projecting...
- 3G detectors will detect
 - ~ 10^5 BBH per year (Regimbau+, PRL 118, 151105)
 - -~ 10^6 BNS per year (LVC, 1710.05837)

CO

A few months worth of advanced detector time

Co -Co Co C Co Co Co 60 Co Ce Co Co Co 20 Co Co Co Co C Co Co Co Co Co C Co 6 5 6 E Co Co Co Co B Co Co 120 0 Co Co

Merger rate density

- We can calculate the BBH merger rate as a function of redshift
- Generated 1, 6, 12 months worth of BBH detections by 3 3G detectors
 - Assume Madau-Dickinson star formation rate (SFR)
 - Tried several prescriptions for the time delay between merger and formation
 - BBH formation rate proportional to SFR
- For BNS see Van Den Broeck JPCS 484 012008

CO

LIGO

Merger rate density

- Merger rate density can be reconstructed after only 1 month of detections
- Unmodeled approach

Star formation rate

 If a model for SFR and time delay is assumed, can measure the time delay coefficient and well as the parameters of the SFR

SFR template:

$$\psi_{MD}(z) = \psi_0 \frac{(1+z)^{lpha}}{(1+rac{1+z}{C})^{eta}}$$

• Depending on relative abundances, might be able to distinguish populations and calculate branching ratios

Going 3G

- A GW150914-like event will have SNR~2000 in a cosmic explorer facility.
- How well can we do?

Precision for a few key parameters for GW150914

Mass ratio q	$0.84\substack{+0.14 \\ -0.21}$
Effective inspiral spin parameter χ_{eff}	$-0.03\substack{+0.14\\-0.15}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	440^{+140}_{-180}

LVC 1602.03840

Going 3G

- A GW150914-like event will have SNR~2000 in a cosmic explorer facility.
- How well can we do?

LIGO

- Advanced detectors will explore the local universe (z ~ 1) and characterize black holes
- A new generation is required to detect BH everywhere in the universe
 - Characterization of BH masses and spins, formation channels, evolution,...
 - Thousands of neutron stars, EOS, cosmology,...
 - Precise tests of general relativity
 - Access to sources throughout cosmic history

CO

Thanks

Challenges

- 3G detectors also come with important challenges
 - Low frequency -> long waveforms -> need to keep runtime manageable
 - Hundreds of events per day
 - Computational challenges
 - High SNR -> require extremely high WF faithfulness
 - High SNR -> require extremely good instrument calibration

CO

Backup

Heterogeneous networks

- Would like to have two (or more!) 3G detectors
- Funding or timelines might in fact result in only 1 3G detector to be online, at least for a while
- We might have
 - 1 3G
 - 1 or more detectors from previous generations

Heterogeneous networks

- Does it make sense to keep old detectors running if a 3G is online?
- Guesstimates:
 - 3G-2G. Factor >10 difference. 2G are of no help
 - 3G-A+. Factor ~>5 difference. A+ probably of no help
 - 3G-Voyager: Voyager might help for sky localization (not detection/range)

Goldserving most of the BBH in the universe

- Considered population of BBH with component masses in the range [6,100] M
- Uniform in com. vol.
- As long as at least 1 ET detector is included, BBH are detected up to redshift of ~15
- Adding Voyager won't change much
- Adding a CE pushes the typical detection farther away

Extrinsic parameters (2.5G+3G)

- Adding a Voyager significantly improves sky localization - factor ~100
- See Mills+ for BNS sky localization precision
- However with only 1 3G will rarely have localizations better than 1deg2
- Smaller improvement in distance estimation

Intrinsic parameters (2.5G+3G)

 Adding a Voyager can improve the source frame mass estimation (since distance is needed to convert from detector frame)

Effective spin

 No improvement for spin parameters

April 14 2018

21GO

Vitale, Whittle, *imminent*