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As of 2019…

Cosmic Explorer Stage 1: a 40 km lıgo a+

Room temperature glass, 1 µm laser, alıgo seismic isolation, scaled-up
alıgo suspensions and masses, 6 dB squeezing, no gravity gradient
subtraction…

Cosmic Explorer Stage 2: a 40 km lıgo Voyager

123K silicon, 2 µm laser, novel seismic isolation, scaled-up Voyager
suspensions and masses, 10 dB squeezing, gravity gradient
subtraction…
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Now in 2020…

Construction and observing schedule remain the same, but

Is CE1 too pessimistic?

By 2030 we may have better seismic isolation, better squeezing,
improved suspension technologies, etc.

Should this „CE1+“ be the baseline instead?

Can we achieve CE2 performance by iterating on CE1 technology?

Forget about silicon and 2 µm—aim for „CE1++“ in the 2040s?
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Site seismicity assumptions
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� Above 1Hz, dominated by
Rayleigh (surface) waves
produced by local sources.

� P- and S-wave (body wave)
amplitude not well known. We
assumed 1/3 of the
Rayleigh-wave amplitude.
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Site acoustic noise assumptions

� Assume a flat infrasound model:
1mPaHz−1/2

� Less certain than seismic model:
infrasound surveys are focused
on f ≲ 5Hz, and are confused by
wind turbulence
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Newtonian noise
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Seismic isolation
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sensors are lowered.

� Several novel isolator ideas:
Mow-Lowry & Martynov,
van Heijningen, …
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Suspensions

� Suspensions for all versions of CE are now 4m total length and
1.5 × 103 kg total mass.

� CE1 uses silica fibers at 1.2GPa with no blade springs.

� CE2 uses silicon ribbons and blade springs.

� The breaking stress is uncertain, and we currently use the
optimistic value of 400MPa.

� CE1+/++ additionally uses 800MPa silica blades.

� The softer silica suspensions are responsible for CE1++’s better
low frequency sensitivity.
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Test mass thermal noise
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Some CE2 challenges not addressed by Voyager

� How do we manufacture 80 cm diameter silicon mirrors?

� Factor of 2 larger than the current achievable silicon boule size.

� Can multiple pieces of silicon be bonded while retaining strict
optical and mechanical loss requirements?

� Voyager needs silicon suspensions as well, however their low
frequency requirements do not demand the same performance as
does CE2’s.
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What technology should we pursue?
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Parameter Summary
Quantity Units CE1 CE1+ CE1++ CE2

Arm power MW 1.5 1.5 1.5 3
Wavelength µm 1 1 1 2
Squeezing dB 6 10 10 10

Temperature K 297 297 297 123
Final stage blade None Silica Silica Silicon

Rayleigh wave suppr. None 2× 10× 10×
Body wave suppr. None None 3× 3×

Susp. point motion aLIGO intermediate 6D 6D
ITM spot size cm 10 10 10 14
ETM spot size cm 13 13 13 18

Mass kg 442 442 442 468
Finesse 630 630 630 630

SRM Transmissivity % 1.4 1.4 1.4 1.4
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