SCIENCE CASE FOR THE NEXT GENERATION OF GROUND-BASED GRAVITATIONAL WAVE DETECTORS

B.S. SATHYAPRAKASH The Pennsylvania State University and Cardiff University GWIC 3G Science Case Team and Consortium co-chaired by Vicky Kalogera and B.S. Sathyaprakash

Gravitational Wave International Committee

DISTANCE REACH OF ET, CE, VOYAGER, A+

ET AND CEEFFORTS

- Einstein Telescope is a project studied in Europe
 - first efforts began in 2007
 - ET conceptual design study completed in 2011
 - currently huge effort to enter the ESFRI Roadmap-mandatory path to acquire funding
- Cosmic Explorer is envisaged to be a new facility in the US
 - NSF funded three-year horizon study (to be completed in 2021)
 - trade study (see talk by Ssohrab Borhanian) to assess capability of different networks
 - site selection, costing and sub-system design

EINSTEIN TELESCOPE – A 10 KM TRIANGLE

COSMIC EXPLORER

EXTREME MATTER IN EXTREME ENVIRONS

0

EQUATION OF STATE OF DENSEST MATTER

Densities ~ $4 \times 10^{17} \text{ kg/m}^3$

Neutron Star

Strange Quark Star

FR€€ QUARKS

Credit: Evan Hall

EINSTEIN TELESCOPE AND COSMIC EXPLORER

MULTIMESSENGER SCIENCE

ORIGIN AND EVOLUTION OF SEED BLACK HOLES

z=2, Light

z=6, Light

z=2, Heavy

z=6, Heavy

108

 10^{9}

3G + LISA, will characterize every binary black hole merger in the universe, and explore demographics of seed black holes and their growth

R Valiante+ in preparation

11

EXTREME GRAVITY AND THE NATURE OF SPACETIME

TESTS OF GENERAL RELATIVITY AND MODIFIED THEORIES OF GRAVITY

3G network will test general relativity in regions of greatest curvature and surface gravity of any experiment

13

COSMOGRAPHY-MEASURING THE UNIVERSE

advanced detectors and their upgrades could resolve the tension after ~50-100 binary neutron star observations with EM counterparts; 3G detectors will provide decisive sky localization required for EM follow-up

GWIC-3G SCT AND CONSORTIUM

science case team

- Bailes, Bizourd, Buonanno, Burrows,
 Colpi, Evans, Fairhurst, Hild, Kalogera,
 Kasliwal, Lehner, Mandel, Mandic,
 Nissanke, Papa, Reddy, Rosswog,
 Sathyaprakash, Van Den Broeck
- science case consortium
 - 220 scientists around the world and growing

- broad scientific community
 - general relativity, numerical relativity, quantum gravity
 - transient astronomy, high-energy astrophysics
 - cosmology, dark energy and dark matter
 - nuclear physics and higher energy particle physics

15

OPPORTUNITY FOR NEW DISCOVERIES

- compared to em window
 - experience tells us that each observational window had led to discoveries never imagined before
 - x-ray, radio, infra-red, gamma-ray, cosmic rays, ...

- gravitational wave detectors, especially at good sensitivities, should be expected to make new discoveries
 - Could lead to new physics that help us understand missing links in fundamental physics and astrophysics

gravitational window is a completely different observational tool

16

SPEED OF GRAVITATIONAL WAVES FROM GW170817 AND GRB170817A

Abbott+ ApJ Letters, 848, L12 (2017)

 $-3 \times 10^{-15} \le \frac{v_{\rm GW} - v_{\rm EM}}{v_{\rm EM}} \le 7 \times 10^{-16}$

3G network would improve this limit by three orders of magnitude

TESTS OF WAVE PROPAGATION $E^2 = p^2 c^2 + A p^\alpha c^\alpha, \quad \alpha > 0$

- modified theories of gravity predict dispersion
- Is dispersion modifies the phase and frequency
- Solution best constraints in the gravity sector for superluminal gravitational waves
 - \bigcirc GW170104 bound on graviton mass: $m_g < 7.7 \times 10^{-23} eV$

Abbott+ PRL, 118, 221101 (2017)

3G network will observe sources @ z~20 and improve limit on graviton mass by an order of magnitude

QUASI-NORMAL MODES AND NO-HAIR TESTS

Dreyer+ 2004, Berti+ 2006, Berti+ 2007, Kamaretsos+ 2012, Gossan+2012, Bhagwat+ 2017, Brito+ 2018

Deformed black holes emit quasi-normal modes

- complex frequencies depend only on the mass and spin
- Measuring two or more modes would provide a smoking gun evidence of Kerr black holes
 - If modes depend on other parameters, consistency between different mode frequencies would fail

WHY TEST GENERAL RELATIVITY

- so far GR has passed all experimental and observational tests
 - solar system tests, binary pulsars, black hole orbital dynamics, ...
- Solution but theoretical and observational problems exist
 - generic prediction of singularity, black hole information loss, accelerated expansion of the Universe, non-detection of dark matter, ...
- GR is violated in quantum gravity theories
 - birefringence of gravitational waves in Chern-Simons theory
 - violation of Lorentz invariance in Loop quantum gravity
 - Planck-scale structure of black hole horizons

TRADE STUDIES

IN SUMARY

- explore the state of ultra dense nucleons and the origin of heavy elements
- QCD phase diagram

variation with redshift

ultra strong fields

of core-collapse supernova

In reveal phase transition from nucleons to free quarks and insight into the

 \bigcirc determine H₀ and the nature of dark energy equation of state and its

study the nature of black holes, test the no-hair theorem and gravity in

detect gravitational waves from supernova and determine the physics

provide a new tool for measuring distances to cosmological sources

- slow-roll inflation
- stiff equation of state

- early universe phase transitions
- axion inflation

cosmic strings

SUPERNOVAE IS signature of physics of 12 supernova THIS THE progenitor mass FINAL WORD? modes

- proto-NS core oscillation
- core rotation rate
- mass accretion rate from shock
- geometry of collapse

- Sequation of state
 - spectrum of GW signal
 - following the phase evolution
- fate of collapse
 - neutron star vs black hole formation
- G sensitive to CCSN in the Milky Way, rates 1-2 per century

MULTIBAND - LISA AND 3G

3G NETWORK WILL EXPLORE FUNDAMENTAL PROPERTIES OF SPACETIME AND MATTER

- equation of state of dense nuclear matter
 - mass-radius relationship, phase transitions to quark-gluon plasma

GRBs, heavy elements, Hubble parameter, dark energy EoS

beyond the quadrupole formula, spin precession, higher modes, Lorentz Invariance violation, massive gravity, scalar modes, additional polarization modes, black hole no-hair theorem

new fields and novel compact objects

primordial stochastic backgrounds

strong field tests in general relativity and modified theories of gravity

WHAT OBSERVATORIES AND INSTRUMENTS MIGHT STILL BE THERE WHEN 3G IS OPERATING?

Dying Low Mass Stars

Exploding White Dwarfs Cosmic Ray Fission

3G network will help identify thousands of kilonova and trace the origin of heavy elements

28

3G network will explore laws of physics at energy scales inaccessible to particle accelerators and potentially discover remnants of phase transitions and new physics

